Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> be a commutative ring with unity and <inline-formula&g...

Full description

Bibliographic Details
Main Authors: Xinfeng Liang, Dandan Ren, Qingliu Li
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/7/328
_version_ 1797433884625862656
author Xinfeng Liang
Dandan Ren
Qingliu Li
author_facet Xinfeng Liang
Dandan Ren
Qingliu Li
author_sort Xinfeng Liang
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> be a commutative ring with unity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> be a triangular algebra over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>. Let a sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mo>=</mo><msub><mrow><mo>{</mo><msub><mi>δ</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></msub></mrow></semantics></math></inline-formula> of nonlinear mappings <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mi>n</mi></msub><mo>:</mo><mi mathvariant="script">T</mi><mo>→</mo><mi mathvariant="script">T</mi></mrow></semantics></math></inline-formula> is a Lie triple higher derivation by local actions satisfying the equation. Under some mild conditions on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula>, we prove in this paper that every Lie triple higher derivation by local actions on the triangular algebras is proper. As an application, we shall give a characterization of Lie triple higher derivations by local actions on upper triangular matrix algebras and nest algebras, respectively.
first_indexed 2024-03-09T10:23:16Z
format Article
id doaj.art-79e2128d730c49a39df37292bc8eb900
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T10:23:16Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-79e2128d730c49a39df37292bc8eb9002023-12-01T21:53:24ZengMDPI AGAxioms2075-16802022-07-0111732810.3390/axioms11070328Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New PerspectiveXinfeng Liang0Dandan Ren1Qingliu Li2School of Mathematics and Big Data, AnHui University of Science & Technology, Huainan 232001, ChinaSchool of Mathematics and Big Data, AnHui University of Science & Technology, Huainan 232001, ChinaSchool of Mathematics and Big Data, AnHui University of Science & Technology, Huainan 232001, ChinaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula> be a commutative ring with unity and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> be a triangular algebra over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>. Let a sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mo>=</mo><msub><mrow><mo>{</mo><msub><mi>δ</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></msub></mrow></semantics></math></inline-formula> of nonlinear mappings <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mi>n</mi></msub><mo>:</mo><mi mathvariant="script">T</mi><mo>→</mo><mi mathvariant="script">T</mi></mrow></semantics></math></inline-formula> is a Lie triple higher derivation by local actions satisfying the equation. Under some mild conditions on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula>, we prove in this paper that every Lie triple higher derivation by local actions on the triangular algebras is proper. As an application, we shall give a characterization of Lie triple higher derivations by local actions on upper triangular matrix algebras and nest algebras, respectively.https://www.mdpi.com/2075-1680/11/7/328Lie triple higher derivationfaithful bimodulehigher derivationlocal actiontriangular algebras
spellingShingle Xinfeng Liang
Dandan Ren
Qingliu Li
Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
Axioms
Lie triple higher derivation
faithful bimodule
higher derivation
local action
triangular algebras
title Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
title_full Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
title_fullStr Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
title_full_unstemmed Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
title_short Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
title_sort nonlinear lie triple higher derivations on triangular algebras by local actions a new perspective
topic Lie triple higher derivation
faithful bimodule
higher derivation
local action
triangular algebras
url https://www.mdpi.com/2075-1680/11/7/328
work_keys_str_mv AT xinfengliang nonlinearlietriplehigherderivationsontriangularalgebrasbylocalactionsanewperspective
AT dandanren nonlinearlietriplehigherderivationsontriangularalgebrasbylocalactionsanewperspective
AT qingliuli nonlinearlietriplehigherderivationsontriangularalgebrasbylocalactionsanewperspective