UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain S...

Full description

Bibliographic Details
Main Author: Moharram Aghapournahr
Format: Article
Language:English
Published: Shahrood University of Technology 2013-09-01
Series:Journal of Algebraic Systems
Subjects:
Online Access:http://jas.shahroodut.ac.ir/article_169_c37d47751d382a040ab25cdfc4d74ec6.pdf
_version_ 1819211577277022208
author Moharram Aghapournahr
author_facet Moharram Aghapournahr
author_sort Moharram Aghapournahr
collection DOAJ
description Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properties of a generalization of cohomological dimension of generalized local cohomology modules. Let $mathcal S$ be a Serre subcategory of the category of $R$--modules and $n > pd M$ be an integer such that $lc^{i}_{fa}(M,N)$ belongs to $mathcal S$ for all $i> n$. Then, for any ideal $fbsupseteq fa$, it is also shown that the module $lc^{n}_{fa}(M,N)/{fb}lc^{n}_{fa}(M,N)$ belongs to $mathcal S$.
first_indexed 2024-12-23T06:29:17Z
format Article
id doaj.art-79e382a8ba0842279d62c7dbe6022e39
institution Directory Open Access Journal
issn 2345-5128
2345-511X
language English
last_indexed 2024-12-23T06:29:17Z
publishDate 2013-09-01
publisher Shahrood University of Technology
record_format Article
series Journal of Algebraic Systems
spelling doaj.art-79e382a8ba0842279d62c7dbe6022e392022-12-21T17:56:59ZengShahrood University of TechnologyJournal of Algebraic Systems2345-51282345-511X2013-09-01111910.22044/jas.2013.169169UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULESMoharram Aghapournahr0Arak AniversityLet $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properties of a generalization of cohomological dimension of generalized local cohomology modules. Let $mathcal S$ be a Serre subcategory of the category of $R$--modules and $n > pd M$ be an integer such that $lc^{i}_{fa}(M,N)$ belongs to $mathcal S$ for all $i> n$. Then, for any ideal $fbsupseteq fa$, it is also shown that the module $lc^{n}_{fa}(M,N)/{fb}lc^{n}_{fa}(M,N)$ belongs to $mathcal S$.http://jas.shahroodut.ac.ir/article_169_c37d47751d382a040ab25cdfc4d74ec6.pdfGeneralized local cohomology moduleSerre subcategorycohomological dimension
spellingShingle Moharram Aghapournahr
UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Journal of Algebraic Systems
Generalized local cohomology module
Serre subcategory
cohomological dimension
title UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
title_full UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
title_fullStr UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
title_full_unstemmed UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
title_short UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
title_sort upper bounds for finiteness of generalized local cohomology modules
topic Generalized local cohomology module
Serre subcategory
cohomological dimension
url http://jas.shahroodut.ac.ir/article_169_c37d47751d382a040ab25cdfc4d74ec6.pdf
work_keys_str_mv AT moharramaghapournahr upperboundsforfinitenessofgeneralizedlocalcohomologymodules