Summary: | We theoretically investigate the dynamics of a quantum system which is coupled to a fluctuating environment based on the framework of Kubo-Anderson spectral diffusion. By employing the projection operator technique, we derive two types of dynamical equations, namely, time-convolution and time-convolutionless quantum master equations, respectively. We derive the exact quantum master equations of a qubit system with both diagonal splitting and tunneling coupling when the environmental noise is subject to a random telegraph process and a Ornstein-Uhlenbeck process, respectively. For the pure decoherence case with no tunneling coupling, the expressions of the decoherence factor we obtained are consistent with the well-known existing ones. The results are significant to quantum information processing and helpful for further understanding the quantum dynamics of open quantum systems.
|