Environmental Modelling of Ionic Mass Transfer Coefficient in a Unique Electrocoagulation Reactor

Ionic mass transfer in a novel electrocoagulation reactor (ECR) using a rotating impeller anode is studied experimentally using the limiting current density method. The CFD simulation is also conducted for characterizing the novel electrocoagulation reactor (ECR) and validating the experimental stud...

Full description

Bibliographic Details
Main Author: Safaa K. Hashim Al-Khalaf , Ahmed Samir Naje, Zaid Abed Al-Ridah and Haider M. Zwain
Format: Article
Language:English
Published: Technoscience Publications 2022-12-01
Series:Nature Environment and Pollution Technology
Subjects:
Online Access:https://neptjournal.com/upload-images/(11)D-1362.pdf
Description
Summary:Ionic mass transfer in a novel electrocoagulation reactor (ECR) using a rotating impeller anode is studied experimentally using the limiting current density method. The CFD simulation is also conducted for characterizing the novel electrocoagulation reactor (ECR) and validating the experimental study of ionic mass transfer. Variables included rotational speed and anode diameter. The Bland-Altman method was used to verify the accuracy of experimental and simulation results. Data for the condition 11852 < Re < 58550 and 88 < Sc < 285 were found to fit the equation for the largest diameter of 11.2 cm; Sh = 2.1Re0.93Sc0.33. Based on COD removal efficiency, optimal EC performance is realized at the largest anode diameter of 11.2 cm, confirming the enhancement of aluminum mass transfer by increasing the anode diameter. The experimental values of current density and mass transfer coefficient are validated by CFD simulation for all the rotational speeds and anode diameters. The accuracy is up to 95% for the experimental current densities compared with simulation values.
ISSN:0972-6268
2395-3454