Monitoring of Corroded and Loosened Bolts in Steel Structures via Deep Learning and Hough Transforms
In this study, a regional convolutional neural network (RCNN)-based deep learning and Hough line transform (HLT) algorithm are applied to monitor corroded and loosened bolts in steel structures. The monitoring goals are to detect rusted bolts distinguished from non-corroded ones and also to estimate...
मुख्य लेखकों: | Quoc-Bao Ta, Jeong-Tae Kim |
---|---|
स्वरूप: | लेख |
भाषा: | English |
प्रकाशित: |
MDPI AG
2020-12-01
|
श्रृंखला: | Sensors |
विषय: | |
ऑनलाइन पहुंच: | https://www.mdpi.com/1424-8220/20/23/6888 |
समान संसाधन
-
Bolt-Loosening Monitoring Framework Using an Image-Based Deep Learning and Graphical Model
द्वारा: Hai Chien Pham, और अन्य
प्रकाशित: (2020-06-01) -
Vibration-Based Loosening Detection of a Multi-Bolt Structure Using Machine Learning Algorithms
द्वारा: Oybek Eraliev, और अन्य
प्रकाशित: (2022-02-01) -
EXPERIMENTAL STUDY ON THE LOOSENING LIFE OF BOLTS
द्वारा: JIANG ShiLin, और अन्य
प्रकाशित: (2019-01-01) -
Self-Loosening Problems of Preloaded Bolted Joints
द्वारा: Kadir ÇAVDAR
प्रकाशित: (2015-03-01) -
Study on Tightening, Anti-Loosening, and Fatigue Resistance Performances of Bolted Joints with Different Anti-Loosening Washers and Nuts
द्वारा: Penghao Zhao, और अन्य
प्रकाशित: (2023-12-01)