Monitoring of Corroded and Loosened Bolts in Steel Structures via Deep Learning and Hough Transforms
In this study, a regional convolutional neural network (RCNN)-based deep learning and Hough line transform (HLT) algorithm are applied to monitor corroded and loosened bolts in steel structures. The monitoring goals are to detect rusted bolts distinguished from non-corroded ones and also to estimate...
المؤلفون الرئيسيون: | Quoc-Bao Ta, Jeong-Tae Kim |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI AG
2020-12-01
|
سلاسل: | Sensors |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.mdpi.com/1424-8220/20/23/6888 |
مواد مشابهة
-
Bolt-Loosening Monitoring Framework Using an Image-Based Deep Learning and Graphical Model
حسب: Hai Chien Pham, وآخرون
منشور في: (2020-06-01) -
Vibration-Based Loosening Detection of a Multi-Bolt Structure Using Machine Learning Algorithms
حسب: Oybek Eraliev, وآخرون
منشور في: (2022-02-01) -
EXPERIMENTAL STUDY ON THE LOOSENING LIFE OF BOLTS
حسب: JIANG ShiLin, وآخرون
منشور في: (2019-01-01) -
Self-Loosening Problems of Preloaded Bolted Joints
حسب: Kadir ÇAVDAR
منشور في: (2015-03-01) -
Study on Tightening, Anti-Loosening, and Fatigue Resistance Performances of Bolted Joints with Different Anti-Loosening Washers and Nuts
حسب: Penghao Zhao, وآخرون
منشور في: (2023-12-01)