A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting

Adjuvant treatment for patients with early stage colorectal cancer (eCRC) is currently based on suboptimal risk stratification, especially for elderly patients. Metabolomics may improve the identification of patients with residual micrometastases after surgery. In this retrospective study, we hypoth...

Full description

Bibliographic Details
Main Authors: Samantha Di Donato, Alessia Vignoli, Chiara Biagioni, Luca Malorni, Elena Mori, Leonardo Tenori, Vanessa Calamai, Annamaria Parnofiello, Giulia Di Pierro, Ilenia Migliaccio, Stefano Cantafio, Maddalena Baraghini, Giuseppe Mottino, Dimitri Becheri, Francesca Del Monte, Elisangela Miceli, Amelia McCartney, Angelo Di Leo, Claudio Luchinat, Laura Biganzoli
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/13/11/2762
_version_ 1797531659701059584
author Samantha Di Donato
Alessia Vignoli
Chiara Biagioni
Luca Malorni
Elena Mori
Leonardo Tenori
Vanessa Calamai
Annamaria Parnofiello
Giulia Di Pierro
Ilenia Migliaccio
Stefano Cantafio
Maddalena Baraghini
Giuseppe Mottino
Dimitri Becheri
Francesca Del Monte
Elisangela Miceli
Amelia McCartney
Angelo Di Leo
Claudio Luchinat
Laura Biganzoli
author_facet Samantha Di Donato
Alessia Vignoli
Chiara Biagioni
Luca Malorni
Elena Mori
Leonardo Tenori
Vanessa Calamai
Annamaria Parnofiello
Giulia Di Pierro
Ilenia Migliaccio
Stefano Cantafio
Maddalena Baraghini
Giuseppe Mottino
Dimitri Becheri
Francesca Del Monte
Elisangela Miceli
Amelia McCartney
Angelo Di Leo
Claudio Luchinat
Laura Biganzoli
author_sort Samantha Di Donato
collection DOAJ
description Adjuvant treatment for patients with early stage colorectal cancer (eCRC) is currently based on suboptimal risk stratification, especially for elderly patients. Metabolomics may improve the identification of patients with residual micrometastases after surgery. In this retrospective study, we hypothesized that metabolomic fingerprinting could improve risk stratification in patients with eCRC. Serum samples obtained after surgery from 94 elderly patients with eCRC (65 relapse free and 29 relapsed, after 5-years median follow up), and from 75 elderly patients with metastatic colorectal cancer (mCRC) obtained before a new line of chemotherapy, were retrospectively analyzed via proton nuclear magnetic resonance spectroscopy. The prognostic role of metabolomics in patients with eCRC was assessed using Kaplan–Meier curves. PCA-CA-kNN could discriminate the metabolomic fingerprint of patients with relapse-free eCRC and mCRC (70.0% accuracy using NOESY spectra). This model was used to classify the samples of patients with relapsed eCRC: 69% of eCRC patients with relapse were predicted as metastatic. The metabolomic classification was strongly associated with prognosis (<i>p</i>-value 0.0005, HR 3.64), independently of tumor stage. In conclusion, metabolomics could be an innovative tool to refine risk stratification in elderly patients with eCRC. Based on these results, a prospective trial aimed at improving risk stratification by metabolomic fingerprinting (LIBIMET) is ongoing.
first_indexed 2024-03-10T10:46:53Z
format Article
id doaj.art-7a1379ac08da45c0b64da938640e6cd5
institution Directory Open Access Journal
issn 2072-6694
language English
last_indexed 2024-03-10T10:46:53Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Cancers
spelling doaj.art-7a1379ac08da45c0b64da938640e6cd52023-11-21T22:31:23ZengMDPI AGCancers2072-66942021-06-011311276210.3390/cancers13112762A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant SettingSamantha Di Donato0Alessia Vignoli1Chiara Biagioni2Luca Malorni3Elena Mori4Leonardo Tenori5Vanessa Calamai6Annamaria Parnofiello7Giulia Di Pierro8Ilenia Migliaccio9Stefano Cantafio10Maddalena Baraghini11Giuseppe Mottino12Dimitri Becheri13Francesca Del Monte14Elisangela Miceli15Amelia McCartney16Angelo Di Leo17Claudio Luchinat18Laura Biganzoli19Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyMagnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, ItalyBioinformatics Unit, Medical Oncology Department, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyMagnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy“Sandro Pitigliani” Translational Research Unit, New Hospital of Prato, Stefano, 59100 Prato, ItalyDepartment of Surgery, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Surgery, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Geriatrics, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Geriatrics, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyMagnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, ItalyDepartment of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, ItalyAdjuvant treatment for patients with early stage colorectal cancer (eCRC) is currently based on suboptimal risk stratification, especially for elderly patients. Metabolomics may improve the identification of patients with residual micrometastases after surgery. In this retrospective study, we hypothesized that metabolomic fingerprinting could improve risk stratification in patients with eCRC. Serum samples obtained after surgery from 94 elderly patients with eCRC (65 relapse free and 29 relapsed, after 5-years median follow up), and from 75 elderly patients with metastatic colorectal cancer (mCRC) obtained before a new line of chemotherapy, were retrospectively analyzed via proton nuclear magnetic resonance spectroscopy. The prognostic role of metabolomics in patients with eCRC was assessed using Kaplan–Meier curves. PCA-CA-kNN could discriminate the metabolomic fingerprint of patients with relapse-free eCRC and mCRC (70.0% accuracy using NOESY spectra). This model was used to classify the samples of patients with relapsed eCRC: 69% of eCRC patients with relapse were predicted as metastatic. The metabolomic classification was strongly associated with prognosis (<i>p</i>-value 0.0005, HR 3.64), independently of tumor stage. In conclusion, metabolomics could be an innovative tool to refine risk stratification in elderly patients with eCRC. Based on these results, a prospective trial aimed at improving risk stratification by metabolomic fingerprinting (LIBIMET) is ongoing.https://www.mdpi.com/2072-6694/13/11/2762metabolomicscolorectal cancerrecurrenceprognosisNMR spectroscopyelderly
spellingShingle Samantha Di Donato
Alessia Vignoli
Chiara Biagioni
Luca Malorni
Elena Mori
Leonardo Tenori
Vanessa Calamai
Annamaria Parnofiello
Giulia Di Pierro
Ilenia Migliaccio
Stefano Cantafio
Maddalena Baraghini
Giuseppe Mottino
Dimitri Becheri
Francesca Del Monte
Elisangela Miceli
Amelia McCartney
Angelo Di Leo
Claudio Luchinat
Laura Biganzoli
A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting
Cancers
metabolomics
colorectal cancer
recurrence
prognosis
NMR spectroscopy
elderly
title A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting
title_full A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting
title_fullStr A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting
title_full_unstemmed A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting
title_short A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting
title_sort serum metabolomics classifier derived from elderly patients with metastatic colorectal cancer predicts relapse in the adjuvant setting
topic metabolomics
colorectal cancer
recurrence
prognosis
NMR spectroscopy
elderly
url https://www.mdpi.com/2072-6694/13/11/2762
work_keys_str_mv AT samanthadidonato aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT alessiavignoli aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT chiarabiagioni aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT lucamalorni aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT elenamori aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT leonardotenori aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT vanessacalamai aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT annamariaparnofiello aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT giuliadipierro aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT ileniamigliaccio aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT stefanocantafio aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT maddalenabaraghini aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT giuseppemottino aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT dimitribecheri aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT francescadelmonte aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT elisangelamiceli aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT ameliamccartney aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT angelodileo aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT claudioluchinat aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT laurabiganzoli aserummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT samanthadidonato serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT alessiavignoli serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT chiarabiagioni serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT lucamalorni serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT elenamori serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT leonardotenori serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT vanessacalamai serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT annamariaparnofiello serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT giuliadipierro serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT ileniamigliaccio serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT stefanocantafio serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT maddalenabaraghini serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT giuseppemottino serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT dimitribecheri serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT francescadelmonte serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT elisangelamiceli serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT ameliamccartney serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT angelodileo serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT claudioluchinat serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting
AT laurabiganzoli serummetabolomicsclassifierderivedfromelderlypatientswithmetastaticcolorectalcancerpredictsrelapseintheadjuvantsetting