Statistics-Based Outlier Detection and Correction Method for Amazon Customer Reviews

People nowadays use the internet to project their assessments, impressions, ideas, and observations about various subjects or products on numerous social networking sites. These sites serve as a great source to gather data for data analytics, sentiment analysis, natural language processing, etc. Con...

Full description

Bibliographic Details
Main Authors: Ishani Chatterjee, Mengchu Zhou, Abdullah Abusorrah, Khaled Sedraoui, Ahmed Alabdulwahab
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/12/1645
Description
Summary:People nowadays use the internet to project their assessments, impressions, ideas, and observations about various subjects or products on numerous social networking sites. These sites serve as a great source to gather data for data analytics, sentiment analysis, natural language processing, etc. Conventionally, the true sentiment of a customer review matches its corresponding star rating. There are exceptions when the star rating of a review is opposite to its true nature. These are labeled as the outliers in a dataset in this work. The state-of-the-art methods for anomaly detection involve manual searching, predefined rules, or traditional machine learning techniques to detect such instances. This paper conducts a sentiment analysis and outlier detection case study for Amazon customer reviews, and it proposes a statistics-based outlier detection and correction method (SODCM), which helps identify such reviews and rectify their star ratings to enhance the performance of a sentiment analysis algorithm without any data loss. This paper focuses on performing SODCM in datasets containing customer reviews of various products, which are (a) scraped from Amazon.com and (b) publicly available. The paper also studies the dataset and concludes the effect of SODCM on the performance of a sentiment analysis algorithm. The results exhibit that SODCM achieves higher accuracy and recall percentage than other state-of-the-art anomaly detection algorithms.
ISSN:1099-4300