Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes

Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous r...

Full description

Bibliographic Details
Main Authors: Diego Escobar-González, Marcos Villacís, Sebastián Páez-Bimos, Gabriel Jácome, Juan González-Vergara, Claudia Encalada, Veerle Vanacker
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/16/6/832
_version_ 1797239034059161600
author Diego Escobar-González
Marcos Villacís
Sebastián Páez-Bimos
Gabriel Jácome
Juan González-Vergara
Claudia Encalada
Veerle Vanacker
author_facet Diego Escobar-González
Marcos Villacís
Sebastián Páez-Bimos
Gabriel Jácome
Juan González-Vergara
Claudia Encalada
Veerle Vanacker
author_sort Diego Escobar-González
collection DOAJ
description Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup><mo><</mo><mi>ϵ</mi><mo><</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>. For the training data, the forecast of the base network demonstrated excellent results, with the lowest magnitude error metric RMSE equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.77</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula>, and NSE and KGE both equal to 0.97. These models show promising potential to accurately predict short-term soil moisture dynamics with potential applications for natural hazard monitoring in mountainous regions.
first_indexed 2024-04-24T17:45:07Z
format Article
id doaj.art-7a199d5d28134687867db5b4e2888f26
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-04-24T17:45:07Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-7a199d5d28134687867db5b4e2888f262024-03-27T14:08:17ZengMDPI AGWater2073-44412024-03-0116683210.3390/w16060832Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical AndesDiego Escobar-González0Marcos Villacís1Sebastián Páez-Bimos2Gabriel Jácome3Juan González-Vergara4Claudia Encalada5Veerle Vanacker6Departamento de Gestión de Recursos Hídricos, Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito, EPMAPS Agua de Quito, Quito 170509, EcuadorDepartamento de Ingeniería Civil y Ambiental & Centro de Investigación y Estudios en Ingeniería de los Recursos Hídricos, Escuela Politécnica Nacional, Quito 170525, EcuadorDepartamento de Ingeniería Civil y Ambiental & Centro de Investigación y Estudios en Ingeniería de los Recursos Hídricos, Escuela Politécnica Nacional, Quito 170525, EcuadorLaboratorio de Geociencias y Medio Ambiente (GEOMA), Carrera de Recursos Naturales Renovables, Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, EcuadorFondo Para la Protección del Agua (FONAG), Mariana de Jesús N32 y Martín de Utreras, Quito 170509, EcuadorDepartamento de Gestión de Recursos Hídricos, Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito, EPMAPS Agua de Quito, Quito 170509, EcuadorEarth and Climate Research, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, BelgiumSoil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup><mo><</mo><mi>ϵ</mi><mo><</mo><mn>1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>. For the training data, the forecast of the base network demonstrated excellent results, with the lowest magnitude error metric RMSE equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.77</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula>, and NSE and KGE both equal to 0.97. These models show promising potential to accurately predict short-term soil moisture dynamics with potential applications for natural hazard monitoring in mountainous regions.https://www.mdpi.com/2073-4441/16/6/832soil moistureneural networkstransfer learningpáramosoil water
spellingShingle Diego Escobar-González
Marcos Villacís
Sebastián Páez-Bimos
Gabriel Jácome
Juan González-Vergara
Claudia Encalada
Veerle Vanacker
Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes
Water
soil moisture
neural networks
transfer learning
páramo
soil water
title Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes
title_full Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes
title_fullStr Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes
title_full_unstemmed Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes
title_short Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes
title_sort soil moisture forecast using transfer learning an application in the high tropical andes
topic soil moisture
neural networks
transfer learning
páramo
soil water
url https://www.mdpi.com/2073-4441/16/6/832
work_keys_str_mv AT diegoescobargonzalez soilmoistureforecastusingtransferlearninganapplicationinthehightropicalandes
AT marcosvillacis soilmoistureforecastusingtransferlearninganapplicationinthehightropicalandes
AT sebastianpaezbimos soilmoistureforecastusingtransferlearninganapplicationinthehightropicalandes
AT gabrieljacome soilmoistureforecastusingtransferlearninganapplicationinthehightropicalandes
AT juangonzalezvergara soilmoistureforecastusingtransferlearninganapplicationinthehightropicalandes
AT claudiaencalada soilmoistureforecastusingtransferlearninganapplicationinthehightropicalandes
AT veerlevanacker soilmoistureforecastusingtransferlearninganapplicationinthehightropicalandes