MicNet toolbox: Visualizing and unraveling a microbial network.

Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand...

Full description

Bibliographic Details
Main Authors: Natalia Favila, David Madrigal-Trejo, Daniel Legorreta, Jazmín Sánchez-Pérez, Laura Espinosa-Asuar, Luis E Eguiarte, Valeria Souza
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0259756
Description
Summary:Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand, we introduce a visualization module that incorporates the use of UMAP, a dimensionality reduction technique that focuses on local patterns, and HDBSCAN, a clustering technique based on density; on the other hand, we have included a module that runs an enhanced version of the SparCC code, sustaining larger datasets than before, and we couple the resulting networks with network theory analyses to describe the resulting co-occurrence networks, including several novel analyses, such as structural balance metrics and a proposal to discover the underlying topology of a co-occurrence network. We validated the proposed toolbox on 1) a simple and well described biological network of kombucha, consisting of 48 ASVs, and 2) we validate the improvements of our new version of SparCC. Finally, we showcase the use of the MicNet toolbox on a large dataset from Archean Domes, consisting of more than 2,000 ASVs. Our toolbox is freely available as a github repository (https://github.com/Labevo/MicNetToolbox), and it is accompanied by a web dashboard (http://micnetapplb-1212130533.us-east-1.elb.amazonaws.com) that can be used in a simple and straightforward manner with relative abundance data. This easy-to-use implementation is aimed to microbial ecologists with little to no experience in programming, while the most experienced bioinformatics will also be able to manipulate the source code's functions with ease.
ISSN:1932-6203