Estimates of certain paraxial diffraction integral operator and its generalized properties

Abstract This paper aims to discuss a generalization of certain paraxial diffraction integral operator in a class of generalized functions. At the start of this paper, we propose a convolution formula and establish certain convolution theorem. Then, with the addition to the convolution theorem, we c...

Full description

Bibliographic Details
Main Authors: Shrideh Al-Omari, Serkan Araci, Mohammed Al-Smadi, Ghaleb Gumah, Hussam Alrabaiah
Format: Article
Language:English
Published: SpringerOpen 2020-08-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-02859-8
Description
Summary:Abstract This paper aims to discuss a generalization of certain paraxial diffraction integral operator in a class of generalized functions. At the start of this paper, we propose a convolution formula and establish certain convolution theorem. Then, with the addition to the convolution theorem, we consider a set of approximating identities and substantially employ our results in generating sets of integrable and locally integrable Boehmians. The said generalized integral operator is tested and declared to be one-to-one and onto mapping. Continuity of the generalized operator with respect to the convergence of the Boehmian spaces is obtained. Over and above, an inversion formula and consistency results are also counted.
ISSN:1687-1847