Fault Diagnosis of Vibration Sensors Based on Triage Loss Function-Improved XGBoost

Vibration sensors are prone to bias, drift, and other failures. To avoid misjudgments in state monitoring systems and potential safety accidents caused by vibration sensor failures, it is significant to diagnose the faults of vibration sensors. Existing methods for vibration sensor fault diagnosis a...

Full description

Bibliographic Details
Main Authors: Chao Fan, Cheng Li, Yanfeng Peng, Yiping Shen, Guanghui Cao, Sai Li
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/21/4442
Description
Summary:Vibration sensors are prone to bias, drift, and other failures. To avoid misjudgments in state monitoring systems and potential safety accidents caused by vibration sensor failures, it is significant to diagnose the faults of vibration sensors. Existing methods for vibration sensor fault diagnosis are primarily based on Deep Learning, but Extreme Gradient Boosting stands out due to its excellent interpretability, and compared to other ensemble learning algorithms, it boasts superior accuracy and efficiency. Therefore, a vibration sensor fault diagnosis method based on Extreme Gradient Boosting is proposed to diagnose seven common types of faults in vibration sensors. To prevent the model from being overwhelmed by simple negative cases during training, a new loss function named Triage Loss is designed to improve the classifier’s performance. The vibration sensor fault diagnosis has confirmed the efficacy and practicality of the suggested approach. The experimental results indicate that the training of the model done using Triage Loss outperforms the training model done using the default loss function, with a maximum improvement of 5.4% accuracy, 5.45% in the F1-score, and 9.87% in the mean Average Precision under different fault rates.
ISSN:2079-9292