The Effect of Initial Structure on Phase Transformation in Continuous Heating of a TA15 Titanium Alloy

The effect of initial structure on phase evolution in continuous heating of a near-α TA15 titanium alloy (Ti-6Al-2Zr-1Mo-1V) was experimentally investigated. To this end; three microstructures were obtained by multiple heat treatment: I-bimodal structure with 50% equaixed α, II-bimodal structure wit...

Full description

Bibliographic Details
Main Authors: Xiaoguang Fan, Qi Li, Anming Zhao, Yuguo Shi, Wenjia Mei
Format: Article
Language:English
Published: MDPI AG 2017-06-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/7/6/200
Description
Summary:The effect of initial structure on phase evolution in continuous heating of a near-α TA15 titanium alloy (Ti-6Al-2Zr-1Mo-1V) was experimentally investigated. To this end; three microstructures were obtained by multiple heat treatment: I-bimodal structure with 50% equaixed α, II-bimodal structure with 15% equiaxed α, III-trimodal structure with 18% equiaxed α and 25% lamellar α. Differential scanning calorimetry (DSC), dilatometry and quantitative metallography were carried out on specimens with the three initial structures at heating rates from 5 to 40 °C/min. The transformation kinetics was modeled with the Johnson–Mehl–Avrami (JMA) approach under non-isothermal condition. It was found that there exists a four-stage transformation for microstructures I and III. The secondary and third stages overlap for microstructure II. The four stages of phase transformation overlap with increasing heating rate. In the presence of α laths, the phase transformation kinetics is affected by the composition difference between lamellar α and primary equiaxed α. Phase transformation is controlled by the growth of existing large β phase.
ISSN:2075-4701