Maximum Entropy Method-Based Acceptor Triplet-State Fluorescence Correlation Spectroscopy Analysis for Determination of Donor–Acceptor Distance Distribution: Theory and Simulation

A maximum entropy method-based acceptor triplet-state fluorescence correlation spectroscopy (tsFCS) analysis, i.e., tsFCS fluorescence resonance energy transfer (tsFCS-FRET), was proposed to resolve the donor-acceptor distance (R) distribution of a FRET system with multiple distances. An R-dependent...

Full description

Bibliographic Details
Main Authors: B. L. Chen, Z. Y. Guo, T. S. Chen
Format: Article
Language:English
Published: IEEE 2015-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/7069259/
Description
Summary:A maximum entropy method-based acceptor triplet-state fluorescence correlation spectroscopy (tsFCS) analysis, i.e., tsFCS fluorescence resonance energy transfer (tsFCS-FRET), was proposed to resolve the donor-acceptor distance (R) distribution of a FRET system with multiple distances. An R-dependent acceptor triplet-state weight distribution function was introduced into the excited tsFCS model with a fixed R, and the weight distribution maximized the value of the Shannon entropy. tsFCS-FRET analysis showed consistent distributions with the actual pre-input for both unimodal distribution and two-species systems and a distribution with three peaks close to the pre-inputted values for three-species system at higher donor laser power. Collectively, tsFCS-FRET provides a powerful tool for resolving the R distribution, in turn, to the FRET efficiency (E) distribution, of a FRET system containing multiple E species.
ISSN:1943-0655