GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior

Testosterone can induce impulsivity, a behavioral impairment associated with various psychiatric illnesses. The molecular mechanisms associated with testosterone-induced impulsivity are unclear. Our earlier studies showed that supraphysiological doses of testosterone to rats induced impulsive behavi...

Full description

Bibliographic Details
Main Authors: Juhee Agrawal, Yogesh Dwivedi
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-11-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2020.600099/full
_version_ 1819169800848408576
author Juhee Agrawal
Yogesh Dwivedi
author_facet Juhee Agrawal
Yogesh Dwivedi
author_sort Juhee Agrawal
collection DOAJ
description Testosterone can induce impulsivity, a behavioral impairment associated with various psychiatric illnesses. The molecular mechanisms associated with testosterone-induced impulsivity are unclear. Our earlier studies showed that supraphysiological doses of testosterone to rats induced impulsive behavior, impacted hypothalamic-pituitary-adrenal axis (HPA) and hypothalamic-pituitary-gonadal axis interactions, and altered α2A adrenergic receptors in prefrontal cortex (PFC). Owing to the importance of GABAergic system in impulsivity and memory, the present study examines whether testosterone-mediated impulsivity is associated with changes in the expression of Gamma-Aminobutyric Acid (GABA) A and B receptor subunit transcripts (Gabra1, Gabra2, Gabra2 transcript variant 2, Gabra3, Gabra4, Gabra5, Gabra6, Gabrb1, Gabrb2, Gabrb3, Gabrg1, Gabrg2, Gabrg3, Gabbr1, Gabbr2) in rat PFC, and whether testosterone influences GABAA receptor subunit organization. We studied GABA receptor functions by examining GABA receptor-mediated calcium/calmodulin-dependent kinase signaling genes (Calm1, Calm2, Calm3, Camk2a, Camk2b, Camk2g, Camk2d, Camk4) in the testosterone-induced impulsivity model. Rats were left untreated as controls (C), gonadectomized (GDX), or GDX and injected with supraphysiological doses of testosterone (T). Impulsive behavior was examined using the go/no-go paradigm. Gene expression was studied using qRT-PCR and GABAA subunit reorganization using cross correlation. Our findings show that expressions of select GABAA receptor subunits (Gabra3, Gabra5, Gabra6) were significantly upregulated in PFC of T group compared to GDX or C groups. GABAA receptor subunit organization was different in C, T, and GDX groups. Additionally, Camk4 expression was significantly downregulated in T compared to C group. Our findings suggest that specific GABAA receptor subunit expression, their reorganization, and Camk4-mediated functions may be associated with testosterone-mediated impulsivity.
first_indexed 2024-12-22T19:25:16Z
format Article
id doaj.art-7a59ea261df14fa286a2eb2fa05ba8cb
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-12-22T19:25:16Z
publishDate 2020-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-7a59ea261df14fa286a2eb2fa05ba8cb2022-12-21T18:15:16ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2020-11-011410.3389/fnins.2020.600099600099GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive BehaviorJuhee AgrawalYogesh DwivediTestosterone can induce impulsivity, a behavioral impairment associated with various psychiatric illnesses. The molecular mechanisms associated with testosterone-induced impulsivity are unclear. Our earlier studies showed that supraphysiological doses of testosterone to rats induced impulsive behavior, impacted hypothalamic-pituitary-adrenal axis (HPA) and hypothalamic-pituitary-gonadal axis interactions, and altered α2A adrenergic receptors in prefrontal cortex (PFC). Owing to the importance of GABAergic system in impulsivity and memory, the present study examines whether testosterone-mediated impulsivity is associated with changes in the expression of Gamma-Aminobutyric Acid (GABA) A and B receptor subunit transcripts (Gabra1, Gabra2, Gabra2 transcript variant 2, Gabra3, Gabra4, Gabra5, Gabra6, Gabrb1, Gabrb2, Gabrb3, Gabrg1, Gabrg2, Gabrg3, Gabbr1, Gabbr2) in rat PFC, and whether testosterone influences GABAA receptor subunit organization. We studied GABA receptor functions by examining GABA receptor-mediated calcium/calmodulin-dependent kinase signaling genes (Calm1, Calm2, Calm3, Camk2a, Camk2b, Camk2g, Camk2d, Camk4) in the testosterone-induced impulsivity model. Rats were left untreated as controls (C), gonadectomized (GDX), or GDX and injected with supraphysiological doses of testosterone (T). Impulsive behavior was examined using the go/no-go paradigm. Gene expression was studied using qRT-PCR and GABAA subunit reorganization using cross correlation. Our findings show that expressions of select GABAA receptor subunits (Gabra3, Gabra5, Gabra6) were significantly upregulated in PFC of T group compared to GDX or C groups. GABAA receptor subunit organization was different in C, T, and GDX groups. Additionally, Camk4 expression was significantly downregulated in T compared to C group. Our findings suggest that specific GABAA receptor subunit expression, their reorganization, and Camk4-mediated functions may be associated with testosterone-mediated impulsivity.https://www.frontiersin.org/articles/10.3389/fnins.2020.600099/fullimpulsivitytestosteroneGABAA receptorrodent modeltranscript level
spellingShingle Juhee Agrawal
Yogesh Dwivedi
GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior
Frontiers in Neuroscience
impulsivity
testosterone
GABAA receptor
rodent model
transcript level
title GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior
title_full GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior
title_fullStr GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior
title_full_unstemmed GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior
title_short GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior
title_sort gabaa receptor subunit transcriptional regulation expression organization and mediated calmodulin signaling in prefrontal cortex of rats showing testosterone mediated impulsive behavior
topic impulsivity
testosterone
GABAA receptor
rodent model
transcript level
url https://www.frontiersin.org/articles/10.3389/fnins.2020.600099/full
work_keys_str_mv AT juheeagrawal gabaareceptorsubunittranscriptionalregulationexpressionorganizationandmediatedcalmodulinsignalinginprefrontalcortexofratsshowingtestosteronemediatedimpulsivebehavior
AT yogeshdwivedi gabaareceptorsubunittranscriptionalregulationexpressionorganizationandmediatedcalmodulinsignalinginprefrontalcortexofratsshowingtestosteronemediatedimpulsivebehavior