ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS

We consider an elliptic system in the disk |z| < 1 for the so-called p-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of K-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the d...

Full description

Bibliographic Details
Main Authors: E. A. Shcherbakov, I. A. Avdeyev
Format: Article
Language:English
Published: Petrozavodsk State University 2019-10-01
Series:Проблемы анализа
Subjects:
Online Access:http://issuesofanalysis.petrsu.ru/article/genpdf.php?id=6670&lang=en
_version_ 1818398194424348672
author E. A. Shcherbakov
I. A. Avdeyev
author_facet E. A. Shcherbakov
I. A. Avdeyev
author_sort E. A. Shcherbakov
collection DOAJ
description We consider an elliptic system in the disk |z| < 1 for the so-called p-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of K-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the degenerating one.
first_indexed 2024-12-14T07:00:55Z
format Article
id doaj.art-7a69d380820b4c1aa87f49ce02652b02
institution Directory Open Access Journal
issn 2306-3424
2306-3432
language English
last_indexed 2024-12-14T07:00:55Z
publishDate 2019-10-01
publisher Petrozavodsk State University
record_format Article
series Проблемы анализа
spelling doaj.art-7a69d380820b4c1aa87f49ce02652b022022-12-21T23:12:25ZengPetrozavodsk State UniversityПроблемы анализа2306-34242306-34322019-10-018(26)314715110.15393/j3.art.2019.6670ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGSE. A. Shcherbakov0I. A. Avdeyev1Kuban State UniversityKuban State UniversityWe consider an elliptic system in the disk |z| < 1 for the so-called p-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of K-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the degenerating one.http://issuesofanalysis.petrsu.ru/article/genpdf.php?id=6670&lang=enquasi-conformal mappingssobolev spaceselliptic systemsembedding theoremstopological mappingsdirichlet integraldouglas integralharmonic functions
spellingShingle E. A. Shcherbakov
I. A. Avdeyev
ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS
Проблемы анализа
quasi-conformal mappings
sobolev spaces
elliptic systems
embedding theorems
topological mappings
dirichlet integral
douglas integral
harmonic functions
title ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS
title_full ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS
title_fullStr ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS
title_full_unstemmed ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS
title_short ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS
title_sort on the compactness of one class of quasiconformal mappings
topic quasi-conformal mappings
sobolev spaces
elliptic systems
embedding theorems
topological mappings
dirichlet integral
douglas integral
harmonic functions
url http://issuesofanalysis.petrsu.ru/article/genpdf.php?id=6670&lang=en
work_keys_str_mv AT eashcherbakov onthecompactnessofoneclassofquasiconformalmappings
AT iaavdeyev onthecompactnessofoneclassofquasiconformalmappings