Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates

The correction of atmospheric effects on optical remote sensing products is an essential component of Analysis Ready Data (ARD) production lines. The MAJA processor aims at providing accurate time series of surface reflectances over land for satellite missions, such as Sentinel-2, Venμs, and Landsat...

Full description

Bibliographic Details
Main Authors: Jérôme Colin, Olivier Hagolle, Lucas Landier, Sophie Coustance, Peter Kettig, Aimé Meygret, Julien Osman, Eric Vermote
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/10/2665
_version_ 1827740191531466752
author Jérôme Colin
Olivier Hagolle
Lucas Landier
Sophie Coustance
Peter Kettig
Aimé Meygret
Julien Osman
Eric Vermote
author_facet Jérôme Colin
Olivier Hagolle
Lucas Landier
Sophie Coustance
Peter Kettig
Aimé Meygret
Julien Osman
Eric Vermote
author_sort Jérôme Colin
collection DOAJ
description The correction of atmospheric effects on optical remote sensing products is an essential component of Analysis Ready Data (ARD) production lines. The MAJA processor aims at providing accurate time series of surface reflectances over land for satellite missions, such as Sentinel-2, Venμs, and Landsat 8. The Centre d’Études Spatiales de la Biosphère (CESBIO) and the Centre National d’Études Spatiales (CNES) share a common effort to maintain, validate, and improve the MAJA processor, using state-of-the-art ground measurement sites, and participating in processor inter-comparisons, such as the Atmospheric Correction Intercomparison Exercise (ACIX). While contributing to the second ACIX-II Land validation exercise, it was found that the candidate MAJA dataset could not adequately be compared to the main reference dataset. MAJA reflectances were corrected for adjacency and topography effects while the reference dataset was not, excluding MAJA from a part of the performance metrics of the exercise. The first part of the following study aims at providing complementary performance assessment to ACIX-II by reprocessing MAJA surface reflectances without adjacency nor topographic correction, allowing for an un-biased full resolution comparison with the reference Sentinel-2 dataset. The second part of the study consists of validating MAJA against surface reflectance measurements time series of up to five years acquired at three automated stations. Both approaches provide extensive insights on the quality of MAJA Sentinel-2 Level 2 products.
first_indexed 2024-03-11T03:21:29Z
format Article
id doaj.art-7a75de0eb6564c378024b2024554b253
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-11T03:21:29Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-7a75de0eb6564c378024b2024554b2532023-11-18T03:08:25ZengMDPI AGRemote Sensing2072-42922023-05-011510266510.3390/rs15102665Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance EstimatesJérôme Colin0Olivier Hagolle1Lucas Landier2Sophie Coustance3Peter Kettig4Aimé Meygret5Julien Osman6Eric Vermote7Centre d’Études Spatiales de la Biosphère, UMR 5126 CESBIO (CNRS/CNES/UPS/IRD), 18 Avenue Edouard Belin, CEDEX 9, 31401 Toulouse, FranceCentre d’Études Spatiales de la Biosphère, UMR 5126 CESBIO (CNRS/CNES/UPS/IRD), 18 Avenue Edouard Belin, CEDEX 9, 31401 Toulouse, FranceCentre National d’Études Spatiales, 18 Avenue Edouard Belin, CEDEX 9, 31401 Toulouse, FranceCentre National d’Études Spatiales, 18 Avenue Edouard Belin, CEDEX 9, 31401 Toulouse, FranceCentre National d’Études Spatiales, 18 Avenue Edouard Belin, CEDEX 9, 31401 Toulouse, FranceCentre National d’Études Spatiales, 18 Avenue Edouard Belin, CEDEX 9, 31401 Toulouse, FranceCS GROUP, Zone d’aménagement Concerté de la Grande Plaine, 6 Rue Brindejonc des Moulinais, 31500 Toulouse, FranceNASA Goddard Space Flight Center Code 619, Greenbelt, MD 20771, USAThe correction of atmospheric effects on optical remote sensing products is an essential component of Analysis Ready Data (ARD) production lines. The MAJA processor aims at providing accurate time series of surface reflectances over land for satellite missions, such as Sentinel-2, Venμs, and Landsat 8. The Centre d’Études Spatiales de la Biosphère (CESBIO) and the Centre National d’Études Spatiales (CNES) share a common effort to maintain, validate, and improve the MAJA processor, using state-of-the-art ground measurement sites, and participating in processor inter-comparisons, such as the Atmospheric Correction Intercomparison Exercise (ACIX). While contributing to the second ACIX-II Land validation exercise, it was found that the candidate MAJA dataset could not adequately be compared to the main reference dataset. MAJA reflectances were corrected for adjacency and topography effects while the reference dataset was not, excluding MAJA from a part of the performance metrics of the exercise. The first part of the following study aims at providing complementary performance assessment to ACIX-II by reprocessing MAJA surface reflectances without adjacency nor topographic correction, allowing for an un-biased full resolution comparison with the reference Sentinel-2 dataset. The second part of the study consists of validating MAJA against surface reflectance measurements time series of up to five years acquired at three automated stations. Both approaches provide extensive insights on the quality of MAJA Sentinel-2 Level 2 products.https://www.mdpi.com/2072-4292/15/10/2665surface reflectanceSentinel-2bidirectional reflectance distribution functionatmospheric correctionaerosolsMAJA
spellingShingle Jérôme Colin
Olivier Hagolle
Lucas Landier
Sophie Coustance
Peter Kettig
Aimé Meygret
Julien Osman
Eric Vermote
Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates
Remote Sensing
surface reflectance
Sentinel-2
bidirectional reflectance distribution function
atmospheric correction
aerosols
MAJA
title Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates
title_full Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates
title_fullStr Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates
title_full_unstemmed Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates
title_short Assessment of the Performance of the Atmospheric Correction Algorithm MAJA for Sentinel-2 Surface Reflectance Estimates
title_sort assessment of the performance of the atmospheric correction algorithm maja for sentinel 2 surface reflectance estimates
topic surface reflectance
Sentinel-2
bidirectional reflectance distribution function
atmospheric correction
aerosols
MAJA
url https://www.mdpi.com/2072-4292/15/10/2665
work_keys_str_mv AT jeromecolin assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates
AT olivierhagolle assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates
AT lucaslandier assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates
AT sophiecoustance assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates
AT peterkettig assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates
AT aimemeygret assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates
AT julienosman assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates
AT ericvermote assessmentoftheperformanceoftheatmosphericcorrectionalgorithmmajaforsentinel2surfacereflectanceestimates