Product Convolution of Generalized Subexponential Distributions

Assume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathM...

Full description

Bibliographic Details
Main Authors: Gustas Mikutavičius, Jonas Šiaulys
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/1/248
Description
Summary:Assume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> are two independent random variables with distribution functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>η</mi></msub></semantics></math></inline-formula>, respectively. The distribution of a random variable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mi>η</mi></mrow></semantics></math></inline-formula>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>ξ</mi></msub><mo>⊗</mo><msub><mi>F</mi><mi>η</mi></msub></mrow></semantics></math></inline-formula>, is called the product-convolution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>η</mi></msub></semantics></math></inline-formula>. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>ξ</mi></msub><mo>⊗</mo><msub><mi>F</mi><mi>η</mi></msub></mrow></semantics></math></inline-formula> is a generalized subexponential distribution if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> belongs to the class of generalized subexponential distributions and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> is nonnegative and not degenerated at zero.
ISSN:2227-7390