Product Convolution of Generalized Subexponential Distributions

Assume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathM...

Full description

Bibliographic Details
Main Authors: Gustas Mikutavičius, Jonas Šiaulys
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/1/248
_version_ 1797440408622465024
author Gustas Mikutavičius
Jonas Šiaulys
author_facet Gustas Mikutavičius
Jonas Šiaulys
author_sort Gustas Mikutavičius
collection DOAJ
description Assume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> are two independent random variables with distribution functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>η</mi></msub></semantics></math></inline-formula>, respectively. The distribution of a random variable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mi>η</mi></mrow></semantics></math></inline-formula>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>ξ</mi></msub><mo>⊗</mo><msub><mi>F</mi><mi>η</mi></msub></mrow></semantics></math></inline-formula>, is called the product-convolution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>η</mi></msub></semantics></math></inline-formula>. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>ξ</mi></msub><mo>⊗</mo><msub><mi>F</mi><mi>η</mi></msub></mrow></semantics></math></inline-formula> is a generalized subexponential distribution if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> belongs to the class of generalized subexponential distributions and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> is nonnegative and not degenerated at zero.
first_indexed 2024-03-09T12:07:43Z
format Article
id doaj.art-7a76162c5aa840509e2d13b5bed8cf3b
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T12:07:43Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-7a76162c5aa840509e2d13b5bed8cf3b2023-11-30T22:55:53ZengMDPI AGMathematics2227-73902023-01-0111124810.3390/math11010248Product Convolution of Generalized Subexponential DistributionsGustas Mikutavičius0Jonas Šiaulys1Institute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaInstitute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaAssume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> are two independent random variables with distribution functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>η</mi></msub></semantics></math></inline-formula>, respectively. The distribution of a random variable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mi>η</mi></mrow></semantics></math></inline-formula>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>ξ</mi></msub><mo>⊗</mo><msub><mi>F</mi><mi>η</mi></msub></mrow></semantics></math></inline-formula>, is called the product-convolution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>η</mi></msub></semantics></math></inline-formula>. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>F</mi><mi>ξ</mi></msub><mo>⊗</mo><msub><mi>F</mi><mi>η</mi></msub></mrow></semantics></math></inline-formula> is a generalized subexponential distribution if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>ξ</mi></msub></semantics></math></inline-formula> belongs to the class of generalized subexponential distributions and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> is nonnegative and not degenerated at zero.https://www.mdpi.com/2227-7390/11/1/248tail functionclosure propertyproduct-convolutiongeneralized subexponential distributionheavy-tailed distribution
spellingShingle Gustas Mikutavičius
Jonas Šiaulys
Product Convolution of Generalized Subexponential Distributions
Mathematics
tail function
closure property
product-convolution
generalized subexponential distribution
heavy-tailed distribution
title Product Convolution of Generalized Subexponential Distributions
title_full Product Convolution of Generalized Subexponential Distributions
title_fullStr Product Convolution of Generalized Subexponential Distributions
title_full_unstemmed Product Convolution of Generalized Subexponential Distributions
title_short Product Convolution of Generalized Subexponential Distributions
title_sort product convolution of generalized subexponential distributions
topic tail function
closure property
product-convolution
generalized subexponential distribution
heavy-tailed distribution
url https://www.mdpi.com/2227-7390/11/1/248
work_keys_str_mv AT gustasmikutavicius productconvolutionofgeneralizedsubexponentialdistributions
AT jonassiaulys productconvolutionofgeneralizedsubexponentialdistributions