Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions

In this paper, we introduce and systematically analyze the classes of (pre-)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">B</mi><mo...

Full description

Bibliographic Details
Main Authors: Wei-Shih Du, Marko Kostić, Daniel Velinov
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/2/147
_version_ 1797620887758831616
author Wei-Shih Du
Marko Kostić
Daniel Velinov
author_facet Wei-Shih Du
Marko Kostić
Daniel Velinov
author_sort Wei-Shih Du
collection DOAJ
description In this paper, we introduce and systematically analyze the classes of (pre-)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">B</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><mrow><mo>(</mo><msub><mi>t</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>-piecewise continuous almost periodic functions and (pre-)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">B</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><mrow><mo>(</mo><msub><mi>t</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>-piecewise continuous uniformly recurrent functions with values in complex Banach spaces. We weaken substantially, or remove completely, the assumption that the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>t</mi><mi>k</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> of possible first kind discontinuities of the function under consideration is a Wexler sequence (in order to achieve these aims, we use certain results about Stepanov almost periodic type functions). We provide many applications in the analysis of the existence and uniqueness of almost periodic type solutions for various classes of the abstract impulsive Volterra integro-differential inclusions.
first_indexed 2024-03-11T08:48:55Z
format Article
id doaj.art-7a76f3544653426283b6268151f39a0a
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-11T08:48:55Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-7a76f3544653426283b6268151f39a0a2023-11-16T20:36:38ZengMDPI AGFractal and Fractional2504-31102023-02-017214710.3390/fractalfract7020147Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential InclusionsWei-Shih Du0Marko Kostić1Daniel Velinov2Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, TaiwanFaculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, SerbiaDepartment for Mathematics and Informatics, Faculty of Civil Engineering, Ss. Cyril and Methodius University in Skopje, Partizanski Odredi 24, P.O. Box 560, 1000 Skopje, North MacedoniaIn this paper, we introduce and systematically analyze the classes of (pre-)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">B</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><mrow><mo>(</mo><msub><mi>t</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>-piecewise continuous almost periodic functions and (pre-)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">B</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><mrow><mo>(</mo><msub><mi>t</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula>-piecewise continuous uniformly recurrent functions with values in complex Banach spaces. We weaken substantially, or remove completely, the assumption that the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>t</mi><mi>k</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> of possible first kind discontinuities of the function under consideration is a Wexler sequence (in order to achieve these aims, we use certain results about Stepanov almost periodic type functions). We provide many applications in the analysis of the existence and uniqueness of almost periodic type solutions for various classes of the abstract impulsive Volterra integro-differential inclusions.https://www.mdpi.com/2504-3110/7/2/147(<i>ℬ</i>,<i>ρ</i>,(<i>t<sub>k</sub></i>))-piecewise continuous almost periodic type functions(<i>ℬ</i>,<i>ρ</i>,(<i>t<sub>k</sub></i>))-piecewise continuous uniformly recurrent type functionsWexler sequencesabstract impulsive Volterra integro-differential inclusionsalmost periodic type solutions
spellingShingle Wei-Shih Du
Marko Kostić
Daniel Velinov
Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions
Fractal and Fractional
(<i>ℬ</i>,<i>ρ</i>,(<i>t<sub>k</sub></i>))-piecewise continuous almost periodic type functions
(<i>ℬ</i>,<i>ρ</i>,(<i>t<sub>k</sub></i>))-piecewise continuous uniformly recurrent type functions
Wexler sequences
abstract impulsive Volterra integro-differential inclusions
almost periodic type solutions
title Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions
title_full Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions
title_fullStr Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions
title_full_unstemmed Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions
title_short Almost Periodic Solutions of Abstract Impulsive Volterra Integro-Differential Inclusions
title_sort almost periodic solutions of abstract impulsive volterra integro differential inclusions
topic (<i>ℬ</i>,<i>ρ</i>,(<i>t<sub>k</sub></i>))-piecewise continuous almost periodic type functions
(<i>ℬ</i>,<i>ρ</i>,(<i>t<sub>k</sub></i>))-piecewise continuous uniformly recurrent type functions
Wexler sequences
abstract impulsive Volterra integro-differential inclusions
almost periodic type solutions
url https://www.mdpi.com/2504-3110/7/2/147
work_keys_str_mv AT weishihdu almostperiodicsolutionsofabstractimpulsivevolterraintegrodifferentialinclusions
AT markokostic almostperiodicsolutionsofabstractimpulsivevolterraintegrodifferentialinclusions
AT danielvelinov almostperiodicsolutionsofabstractimpulsivevolterraintegrodifferentialinclusions