Growth Equation of the General Fractional Calculus

We consider the Cauchy problem <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo...

Full description

Bibliographic Details
Main Authors: Anatoly N. Kochubei, Yuri Kondratiev
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/7/615
Description
Summary:We consider the Cauchy problem <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mi>u</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&#955;</mi> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>u</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> </semantics> </math> </inline-formula> is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory <b>71</b> (2011), 583&#8722;600), <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#955;</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. The solution is a generalization of the function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>↦</mo> <msub> <mi>E</mi> <mi>&#945;</mi> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <msup> <mi>t</mi> <mi>&#945;</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>&#945;</mi> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>&#945;</mi> </msub> </semantics> </math> </inline-formula> is the Mittag&#8722;Leffler function. The asymptotics of this solution, as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>, are studied.
ISSN:2227-7390