Growth Equation of the General Fractional Calculus

We consider the Cauchy problem <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo...

Full description

Bibliographic Details
Main Authors: Anatoly N. Kochubei, Yuri Kondratiev
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/7/615
_version_ 1819018621715742720
author Anatoly N. Kochubei
Yuri Kondratiev
author_facet Anatoly N. Kochubei
Yuri Kondratiev
author_sort Anatoly N. Kochubei
collection DOAJ
description We consider the Cauchy problem <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mi>u</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&#955;</mi> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>u</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> </semantics> </math> </inline-formula> is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory <b>71</b> (2011), 583&#8722;600), <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#955;</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. The solution is a generalization of the function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>↦</mo> <msub> <mi>E</mi> <mi>&#945;</mi> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <msup> <mi>t</mi> <mi>&#945;</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>&#945;</mi> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>&#945;</mi> </msub> </semantics> </math> </inline-formula> is the Mittag&#8722;Leffler function. The asymptotics of this solution, as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>, are studied.
first_indexed 2024-12-21T03:22:20Z
format Article
id doaj.art-7a8beb66d6d74800b87158f9715fd409
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-21T03:22:20Z
publishDate 2019-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-7a8beb66d6d74800b87158f9715fd4092022-12-21T19:17:41ZengMDPI AGMathematics2227-73902019-07-017761510.3390/math7070615math7070615Growth Equation of the General Fractional CalculusAnatoly N. Kochubei0Yuri Kondratiev1Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska 3, 01024 Kyiv, UkraineDepartment of Mathematics, University of Bielefeld, D-33615 Bielefeld, GermanyWe consider the Cauchy problem <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mi>u</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&#955;</mi> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>u</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> </semantics> </math> </inline-formula> is the general convolutional derivative introduced in the paper (A. N. Kochubei, Integral Equations Oper. Theory <b>71</b> (2011), 583&#8722;600), <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#955;</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. The solution is a generalization of the function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>↦</mo> <msub> <mi>E</mi> <mi>&#945;</mi> </msub> <mrow> <mo>(</mo> <mi>&#955;</mi> <msup> <mi>t</mi> <mi>&#945;</mi> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>&lt;</mo> <mi>&#945;</mi> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>&#945;</mi> </msub> </semantics> </math> </inline-formula> is the Mittag&#8722;Leffler function. The asymptotics of this solution, as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>, are studied.https://www.mdpi.com/2227-7390/7/7/615generalized fractional derivativesgrowth equationMittag–Leffler function
spellingShingle Anatoly N. Kochubei
Yuri Kondratiev
Growth Equation of the General Fractional Calculus
Mathematics
generalized fractional derivatives
growth equation
Mittag–Leffler function
title Growth Equation of the General Fractional Calculus
title_full Growth Equation of the General Fractional Calculus
title_fullStr Growth Equation of the General Fractional Calculus
title_full_unstemmed Growth Equation of the General Fractional Calculus
title_short Growth Equation of the General Fractional Calculus
title_sort growth equation of the general fractional calculus
topic generalized fractional derivatives
growth equation
Mittag–Leffler function
url https://www.mdpi.com/2227-7390/7/7/615
work_keys_str_mv AT anatolynkochubei growthequationofthegeneralfractionalcalculus
AT yurikondratiev growthequationofthegeneralfractionalcalculus