Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability

<p>Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth bas...

Full description

Bibliographic Details
Main Authors: A. D. Fraser, R. A. Massom, M. S. Handcock, P. Reid, K. I. Ohshima, M. N. Raphael, J. Cartwright, A. R. Klekociuk, Z. Wang, R. Porter-Smith
Format: Article
Language:English
Published: Copernicus Publications 2021-11-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/15/5061/2021/tc-15-5061-2021.pdf
_version_ 1831689979396358144
author A. D. Fraser
R. A. Massom
R. A. Massom
M. S. Handcock
P. Reid
P. Reid
K. I. Ohshima
M. N. Raphael
J. Cartwright
A. R. Klekociuk
A. R. Klekociuk
Z. Wang
R. Porter-Smith
author_facet A. D. Fraser
R. A. Massom
R. A. Massom
M. S. Handcock
P. Reid
P. Reid
K. I. Ohshima
M. N. Raphael
J. Cartwright
A. R. Klekociuk
A. R. Klekociuk
Z. Wang
R. Porter-Smith
author_sort A. D. Fraser
collection DOAJ
description <p>Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">882</mn><mo>±</mo><mn mathvariant="normal">824</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="453c88ebba731e287b80a2e1ca09d1f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00001.svg" width="58pt" height="10pt" src="tc-15-5061-2021-ie00001.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.19</mn><mo>±</mo><mn mathvariant="normal">0.18</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ae39578bd83f0d4df3b4603b31a77636"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00002.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00002.png"/></svg:svg></span></span> % yr<span class="inline-formula"><sup>−1</sup></span>) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1198</mn><mo>±</mo><mn mathvariant="normal">359</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="82580160fd0734bcdcbcf8c7aa9c79ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00003.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00003.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1.10</mn><mo>±</mo><mn mathvariant="normal">0.35</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b0635188d1aab802b0a92816c8f515e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00004.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00004.png"/></svg:svg></span></span> % yr<span class="inline-formula"><sup>−1</sup></span>). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1206</mn><mo>±</mo><mn mathvariant="normal">277</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="da2c2b434b71c0185874a7ded8fc6352"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00005.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00005.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.78</mn><mo>±</mo><mn mathvariant="normal">0.41</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="a811b84b1fd9eff69f98809409a08608"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00006.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00006.png"/></svg:svg></span></span> % yr<span class="inline-formula"><sup>−1</sup></span>) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies.</p>
first_indexed 2024-12-20T11:00:27Z
format Article
id doaj.art-7aa407daf1784738a54b1a15e7b29e9f
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-12-20T11:00:27Z
publishDate 2021-11-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-7aa407daf1784738a54b1a15e7b29e9f2022-12-21T19:43:01ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242021-11-01155061507710.5194/tc-15-5061-2021Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variabilityA. D. Fraser0R. A. Massom1R. A. Massom2M. S. Handcock3P. Reid4P. Reid5K. I. Ohshima6M. N. Raphael7J. Cartwright8A. R. Klekociuk9A. R. Klekociuk10Z. Wang11R. Porter-Smith12Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, AustraliaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, AustraliaAustralian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, AustraliaDepartment of Geography, University of California, Los Angeles, Los Angeles, CA 90095, USAAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, AustraliaBureau of Meteorology, 111 Macquarie St, Hobart, Tasmania 7000, AustraliaInstitute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, JapanDepartment of Statistics, University of California, Los Angeles, Los Angeles, CA 90095, USASpire Global, Inc., Glasgow, G3 8JU, UKAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, AustraliaAustralian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, AustraliaInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, AustraliaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia<p>Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">882</mn><mo>±</mo><mn mathvariant="normal">824</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="453c88ebba731e287b80a2e1ca09d1f2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00001.svg" width="58pt" height="10pt" src="tc-15-5061-2021-ie00001.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.19</mn><mo>±</mo><mn mathvariant="normal">0.18</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ae39578bd83f0d4df3b4603b31a77636"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00002.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00002.png"/></svg:svg></span></span> % yr<span class="inline-formula"><sup>−1</sup></span>) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1198</mn><mo>±</mo><mn mathvariant="normal">359</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="82580160fd0734bcdcbcf8c7aa9c79ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00003.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00003.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1.10</mn><mo>±</mo><mn mathvariant="normal">0.35</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b0635188d1aab802b0a92816c8f515e7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00004.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00004.png"/></svg:svg></span></span> % yr<span class="inline-formula"><sup>−1</sup></span>). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1206</mn><mo>±</mo><mn mathvariant="normal">277</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="da2c2b434b71c0185874a7ded8fc6352"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00005.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00005.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.78</mn><mo>±</mo><mn mathvariant="normal">0.41</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="a811b84b1fd9eff69f98809409a08608"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-15-5061-2021-ie00006.svg" width="64pt" height="10pt" src="tc-15-5061-2021-ie00006.png"/></svg:svg></span></span> % yr<span class="inline-formula"><sup>−1</sup></span>) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies.</p>https://tc.copernicus.org/articles/15/5061/2021/tc-15-5061-2021.pdf
spellingShingle A. D. Fraser
R. A. Massom
R. A. Massom
M. S. Handcock
P. Reid
P. Reid
K. I. Ohshima
M. N. Raphael
J. Cartwright
A. R. Klekociuk
A. R. Klekociuk
Z. Wang
R. Porter-Smith
Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
The Cryosphere
title Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_full Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_fullStr Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_full_unstemmed Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_short Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
title_sort eighteen year record of circum antarctic landfast sea ice distribution allows detailed baseline characterisation and reveals trends and variability
url https://tc.copernicus.org/articles/15/5061/2021/tc-15-5061-2021.pdf
work_keys_str_mv AT adfraser eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT ramassom eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT ramassom eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT mshandcock eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT preid eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT preid eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT kiohshima eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT mnraphael eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT jcartwright eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT arklekociuk eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT arklekociuk eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT zwang eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability
AT rportersmith eighteenyearrecordofcircumantarcticlandfastseaicedistributionallowsdetailedbaselinecharacterisationandrevealstrendsandvariability