Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results

Summary: Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic control of metabolite levels. However, interpreting these associations remains challenging due to a lack of tools to annotate gene-metabolite pairs beyond the use of conservative statistical si...

Description complète

Détails bibliographiques
Auteurs principaux: Cantin Baron, Sarah Cherkaoui, Sandra Therrien-Laperriere, Yann Ilboudo, Raphaël Poujol, Pamela Mehanna, Melanie E. Garrett, Marilyn J. Telen, Allison E. Ashley-Koch, Pablo Bartolucci, John D. Rioux, Guillaume Lettre, Christine Des Rosiers, Matthieu Ruiz, Julie G. Hussin
Format: Article
Langue:English
Publié: Elsevier 2023-12-01
Collection:iScience
Sujets:
Accès en ligne:http://www.sciencedirect.com/science/article/pii/S2589004223025506
_version_ 1827582073646350336
author Cantin Baron
Sarah Cherkaoui
Sandra Therrien-Laperriere
Yann Ilboudo
Raphaël Poujol
Pamela Mehanna
Melanie E. Garrett
Marilyn J. Telen
Allison E. Ashley-Koch
Pablo Bartolucci
John D. Rioux
Guillaume Lettre
Christine Des Rosiers
Matthieu Ruiz
Julie G. Hussin
author_facet Cantin Baron
Sarah Cherkaoui
Sandra Therrien-Laperriere
Yann Ilboudo
Raphaël Poujol
Pamela Mehanna
Melanie E. Garrett
Marilyn J. Telen
Allison E. Ashley-Koch
Pablo Bartolucci
John D. Rioux
Guillaume Lettre
Christine Des Rosiers
Matthieu Ruiz
Julie G. Hussin
author_sort Cantin Baron
collection DOAJ
description Summary: Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic control of metabolite levels. However, interpreting these associations remains challenging due to a lack of tools to annotate gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we introduce the shortest reactional distance (SRD) metric, drawing from the comprehensive KEGG database, to enhance the biological interpretation of mGWAS results. We applied this approach to three independent mGWAS, including a case study on sickle cell disease patients. Our analysis reveals an enrichment of small SRD values in reported mGWAS pairs, with SRD values significantly correlating with mGWAS p values, even beyond the standard conservative thresholds. We demonstrate the utility of SRD annotation in identifying potential false negatives and inaccuracies within current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs, suitable to integrate statistical evidence to biological networks.
first_indexed 2024-03-08T22:45:18Z
format Article
id doaj.art-7aa4fc355e824ed1a1b9f6bcb1ad3e8f
institution Directory Open Access Journal
issn 2589-0042
language English
last_indexed 2024-03-08T22:45:18Z
publishDate 2023-12-01
publisher Elsevier
record_format Article
series iScience
spelling doaj.art-7aa4fc355e824ed1a1b9f6bcb1ad3e8f2023-12-17T06:40:55ZengElsevieriScience2589-00422023-12-012612108473Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies resultsCantin Baron0Sarah Cherkaoui1Sandra Therrien-Laperriere2Yann Ilboudo3Raphaël Poujol4Pamela Mehanna5Melanie E. Garrett6Marilyn J. Telen7Allison E. Ashley-Koch8Pablo Bartolucci9John D. Rioux10Guillaume Lettre11Christine Des Rosiers12Matthieu Ruiz13Julie G. Hussin14Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Montreal Heart Institute, Montréal, QC, CanadaMontreal Heart Institute, Montréal, QC, Canada; Division of Oncology and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, FranceMontreal Heart Institute, Montréal, QC, CanadaDépartement de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Montreal Heart Institute, Montréal, QC, CanadaMontreal Heart Institute, Montréal, QC, CanadaMontreal Heart Institute, Montréal, QC, CanadaDuke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USADivision of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC, USADuke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USAUniversité Paris Est Créteil, Hôpitaux Universitaires Henri Mondor, APHP, Sickle cell referral center – UMGGR, Créteil, France; Université Paris Est Créteil, IMRB, Laboratory of excellence LABEX, Créteil, FranceDépartement de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Montreal Heart Institute, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, CanadaMontreal Heart Institute, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, CanadaDépartement de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Montreal Heart Institute, Montréal, QC, Canada; Département de Nutrition, Université de Montréal, Montréal, QC, CanadaMontreal Heart Institute, Montréal, QC, Canada; Département de Nutrition, Université de Montréal, Montréal, QC, CanadaMontreal Heart Institute, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada; Corresponding authorSummary: Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic control of metabolite levels. However, interpreting these associations remains challenging due to a lack of tools to annotate gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we introduce the shortest reactional distance (SRD) metric, drawing from the comprehensive KEGG database, to enhance the biological interpretation of mGWAS results. We applied this approach to three independent mGWAS, including a case study on sickle cell disease patients. Our analysis reveals an enrichment of small SRD values in reported mGWAS pairs, with SRD values significantly correlating with mGWAS p values, even beyond the standard conservative thresholds. We demonstrate the utility of SRD annotation in identifying potential false negatives and inaccuracies within current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs, suitable to integrate statistical evidence to biological networks.http://www.sciencedirect.com/science/article/pii/S2589004223025506Association analysisComputational bioinformaticsQuantitative genetics
spellingShingle Cantin Baron
Sarah Cherkaoui
Sandra Therrien-Laperriere
Yann Ilboudo
Raphaël Poujol
Pamela Mehanna
Melanie E. Garrett
Marilyn J. Telen
Allison E. Ashley-Koch
Pablo Bartolucci
John D. Rioux
Guillaume Lettre
Christine Des Rosiers
Matthieu Ruiz
Julie G. Hussin
Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results
iScience
Association analysis
Computational bioinformatics
Quantitative genetics
title Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results
title_full Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results
title_fullStr Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results
title_full_unstemmed Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results
title_short Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results
title_sort gene metabolite annotation with shortest reactional distance enhances metabolite genome wide association studies results
topic Association analysis
Computational bioinformatics
Quantitative genetics
url http://www.sciencedirect.com/science/article/pii/S2589004223025506
work_keys_str_mv AT cantinbaron genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT sarahcherkaoui genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT sandratherrienlaperriere genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT yannilboudo genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT raphaelpoujol genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT pamelamehanna genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT melanieegarrett genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT marilynjtelen genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT allisoneashleykoch genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT pablobartolucci genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT johndrioux genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT guillaumelettre genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT christinedesrosiers genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT matthieuruiz genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults
AT julieghussin genemetaboliteannotationwithshortestreactionaldistanceenhancesmetabolitegenomewideassociationstudiesresults