The analysis of shear strength of flexural RC elements according to EC2 and STR / Lenkiamųjų gelžbetoninių elementų įstrižojo pjūvio stiprumo pagal STR ir EC2 analizė

When the various reinforced concrete structures are designed according to EC2 and STR, the difference of calculation results, is quite significant. In this article the calculations of shear strength of bending reinforced concrete elements are investigated according to these standards. The comparison...

Full description

Bibliographic Details
Main Authors: Šarūnas Kelpša, Mindaugas Augonis
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2013-01-01
Series:Engineering Structures and Technologies
Subjects:
Online Access:https://journals.vgtu.lt/index.php/EST/article/view/4725
Description
Summary:When the various reinforced concrete structures are designed according to EC2 and STR, the difference of calculation results, is quite significant. In this article the calculations of shear strength of bending reinforced concrete elements are investigated according to these standards. The comparison of such calculations is also significant in the sense that the shear strength calculations are carried out according to different principles. The STR regulations are based on work of the shear reinforcement crossing the oblique section and the compressed concrete at the end of the section. In this case, at the supporting zone, the external bending moment and shear force should be in equilibrium with the internal forces in reinforcement and compressed concrete, i.e., the cross section must be checked not only from the external shear force, but also from bending moment. In EC2 standard, the shear strengths are calculated according to simplified truss model, which consists of the tension shear reinforcement bars and compressed concrete struts. The bending moment is not estimated. After calculation analysis of these two methods the relationships between shear strength and various element parameters are presented. The elements reinforced with stirrups and bends are investigated additionally because in EC2 this case is not presented. According to EC2 the simplified truss model solution depends on the compression strut angle value θ, which is limited in certain interval. Since the component of tension reinforcement bar directly depends on the angle θ and the component of compression strut depends on it conversely, then exists some value θ when the both components are equal. So the angle θ can be found when such two components will be equated. However, such calculation of angle θ became complicated if the load is uniform, because then the components of tension bar are estimated not in support cross section but in cross section that are displaced by distance d. So, the cube equation should be solved. For simplification of such solution the graphical method to find out the angle θ and the shear strength are presented. In these graphics the intersection point of two components (shear reinforcement and concrete) curves describes the shear strength of element. Santrauka Straipsnyje apžvelgtos ir palygintos STR ir EC2 įstrižojo pjūvio stiprumo skaičiavimo metodikos stačiakampio skerspjūvio elementams. Normatyve neapibrėžtas EC2 metodikos santvaros modelio spyrių posvyrio kampo skaičiavimas, lemiantis galutinį įstrižojo pjūvio stiprumą. Straipsnyje pateikiamos kampo θ apskaičiavimo lygtys, atsižvelgiant į apkrovimo pobūdį. Norint supaprastinti pateiktų lygčių sprendimą siūlomas grafoanalitinis sprendimo būdas, pritaikant papildomus koeficientus. EC2 neapibrėžia skaičiavimo išraiškų, kai skersinis armavimas yra apkabos ir atlankos. Minėtos išraiškos suformuluotos ir pateiktos straipsnyje. Nustačius EC2 metodikos dėsningumus siūlomas alternatyvus apytikslis skaičiavimo būdas atlankomis ir apkabomis armuotiems elementams. Straipsnyje apžvelgtos abi – STR ir EC2 – metodikos, išskiriant pagrindinius skirtumus ir dėsningumus. Reikšminiai žodžiai: įstrižasis pjūvis, skersinė armatūra, apkabos, atlankos, santvaros modelis, spyriai, ryšiai
ISSN:2029-882X
2029-8838