Synthesis and characterization of some tetrazoles and their prospective for aerobic micro-fouling mitigation

Two series of tetrazole derivatives of the type N-(1H-tetrazol-5-yl)-1-(aryl)methanimine (101–106) and 1-(4-alkoxyphenyl)-N-(1H-tetrazol-5-yl)methanimine (107–111) were synthesized and characterized via conventional tools of analysis (elemental analysis, FT-IR and 1H NMR spectroscopy). These two syn...

Full description

Bibliographic Details
Main Authors: Safaa I. Elewa, Nesreen A. Fatthallah, Maher I. Nessim, Ahmed F. El-Farargy
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220304007
Description
Summary:Two series of tetrazole derivatives of the type N-(1H-tetrazol-5-yl)-1-(aryl)methanimine (101–106) and 1-(4-alkoxyphenyl)-N-(1H-tetrazol-5-yl)methanimine (107–111) were synthesized and characterized via conventional tools of analysis (elemental analysis, FT-IR and 1H NMR spectroscopy). These two synthesized series were biologically evaluated for their potentials against some microbial biofilm causing strains (micro bio-foulants). Biological activities were evaluated by MIC values and cell viability percentages of them. In case of compounds (107–111), 107 was the most potent antimicrobial one, where its MIC values were 10.666667 µg/ml; 12.82222 µg/ml and 21.43666 µg/ml for Staphylococcus aureus, Escherichia coli and Candida albicans respectively, whereas compound 106, (of group 101–106), MIC values were 16 µg/ml for all the tested microorganisms. Viability assay showed that 107 activity percentages were 96.99456%, 92.32886% and 89.09558% against Gm +ve bacteria, Gm −ve bacteria and yeast respectively, whereas 106 activity percentages were 95.255569%, 90.204675% and 86.710956% against Gm +ve bacteria, Gm −ve bacteria and yeast respectively. Two antimicrobial mode of actions were proposed and discussed depending on the two evaluated tetrazole groups.
ISSN:1878-5352