Inequalities for curvature integrals in Euclidean plane

Abstract Let γ be a closed strictly convex curve in the Euclidean plane R2 $\mathbb{R}^{2}$ with length L and enclosing an area A, and A˜1 $\tilde{A}_{1}$ denote the oriented area of the domain enclosed by the locus of curvature centers of γ. Pan and Xu conjectured that there exists a best constant...

Full description

Bibliographic Details
Main Author: Zengle Zhang
Format: Article
Language:English
Published: SpringerOpen 2019-06-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-019-2116-5

Similar Items