Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion Mode

ObjectiveThe study aimed to evaluate and compare the pharmacokinetic/pharmacodynamic (PK/PD) exposure to vancomycin in the novel optimal two-step infusion (OTSI) vs. intermittent infusion (II) vs. continuous infusion (CI) mode, for MRSA bloodstream infections occurring in critical patients.MethodsWi...

Full description

Bibliographic Details
Main Authors: Xiangqing Song, Mi Han
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-07-01
Series:Frontiers in Cellular and Infection Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcimb.2022.874401/full
_version_ 1818113160506245120
author Xiangqing Song
Mi Han
author_facet Xiangqing Song
Mi Han
author_sort Xiangqing Song
collection DOAJ
description ObjectiveThe study aimed to evaluate and compare the pharmacokinetic/pharmacodynamic (PK/PD) exposure to vancomycin in the novel optimal two-step infusion (OTSI) vs. intermittent infusion (II) vs. continuous infusion (CI) mode, for MRSA bloodstream infections occurring in critical patients.MethodsWith PK/PD modeling and Monte Carlo simulations, the PK/PD exposure of 15 OTSI, 13 II, and 6 CI regimens for vancomycin, at 1, 2, 3, 4, 5, and 6 g daily dose, was evaluated. Using the Monte Carlo simulations, the vancomycin population PK parameters derived from critical patients, the PD parameter for MRSA isolates [i.e., minimum inhibitory concentration (MIC)], and the dosing parameters of these regimens were integrated into a robust mdel of vancomycin PK/PD index, defined as a ratio of the daily area under the curve (AUC0–24) to MIC (i.e., AUC0–24/MIC), to estimate the probability of target attainment (PTA) of these regimens against MRSA isolates with an MIC of 0.5, 1, 2, 4, and 8 mg/L in patients with varying renal function. The PTA at an AUC0–24/MIC ratio of >400, 400–600, and >600 was estimated. A regimen with a PTA of ≥90% at an AUC0–24/MIC ratio of 400–600, which is supposed to maximize both efficacy and safety, was considered optimal.ResultsAt the same daily dose, almost only the OTSI regimens showed a PTA of ≥90% at an AUC0–24/MIC ratio of 400–600, and this profile seems evident especially in patients with creatinine clearance (CLcr) of ≥60 ml/min and for isolates with an MIC of ≤2 mg/L. However, for patients with CLcr of <60 ml/min and for isolates with an MIC of ≥4 mg/L, the II regimens often displayed a higher or even ≥90% PTA at an AUC0–24/MIC ratio of >400 and of >600. The CI regimens frequently afforded a reduced PTA at an AUC0–24/MIC ratio of >400 and of >600, regardless of CLcr and MIC.ConclusionsThe data indicated that the OTSI regimens allowed preferred PK/PD exposure in terms of both efficacy and safety, and thus should be focused more on, especially in patients with CLcr of ≥60 ml/min and for isolates with an MIC of ≤2 mg/L.
first_indexed 2024-12-11T03:30:25Z
format Article
id doaj.art-7ad02382606c430285acb50a37ba29dd
institution Directory Open Access Journal
issn 2235-2988
language English
last_indexed 2024-12-11T03:30:25Z
publishDate 2022-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cellular and Infection Microbiology
spelling doaj.art-7ad02382606c430285acb50a37ba29dd2022-12-22T01:22:23ZengFrontiers Media S.A.Frontiers in Cellular and Infection Microbiology2235-29882022-07-011210.3389/fcimb.2022.874401874401Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion ModeXiangqing SongMi HanObjectiveThe study aimed to evaluate and compare the pharmacokinetic/pharmacodynamic (PK/PD) exposure to vancomycin in the novel optimal two-step infusion (OTSI) vs. intermittent infusion (II) vs. continuous infusion (CI) mode, for MRSA bloodstream infections occurring in critical patients.MethodsWith PK/PD modeling and Monte Carlo simulations, the PK/PD exposure of 15 OTSI, 13 II, and 6 CI regimens for vancomycin, at 1, 2, 3, 4, 5, and 6 g daily dose, was evaluated. Using the Monte Carlo simulations, the vancomycin population PK parameters derived from critical patients, the PD parameter for MRSA isolates [i.e., minimum inhibitory concentration (MIC)], and the dosing parameters of these regimens were integrated into a robust mdel of vancomycin PK/PD index, defined as a ratio of the daily area under the curve (AUC0–24) to MIC (i.e., AUC0–24/MIC), to estimate the probability of target attainment (PTA) of these regimens against MRSA isolates with an MIC of 0.5, 1, 2, 4, and 8 mg/L in patients with varying renal function. The PTA at an AUC0–24/MIC ratio of >400, 400–600, and >600 was estimated. A regimen with a PTA of ≥90% at an AUC0–24/MIC ratio of 400–600, which is supposed to maximize both efficacy and safety, was considered optimal.ResultsAt the same daily dose, almost only the OTSI regimens showed a PTA of ≥90% at an AUC0–24/MIC ratio of 400–600, and this profile seems evident especially in patients with creatinine clearance (CLcr) of ≥60 ml/min and for isolates with an MIC of ≤2 mg/L. However, for patients with CLcr of <60 ml/min and for isolates with an MIC of ≥4 mg/L, the II regimens often displayed a higher or even ≥90% PTA at an AUC0–24/MIC ratio of >400 and of >600. The CI regimens frequently afforded a reduced PTA at an AUC0–24/MIC ratio of >400 and of >600, regardless of CLcr and MIC.ConclusionsThe data indicated that the OTSI regimens allowed preferred PK/PD exposure in terms of both efficacy and safety, and thus should be focused more on, especially in patients with CLcr of ≥60 ml/min and for isolates with an MIC of ≤2 mg/L.https://www.frontiersin.org/articles/10.3389/fcimb.2022.874401/fullvancomycinmethicillin-resistant Staphylococcus aureuspharmacokinetic/pharmacodynamiccontinuous infusionintermittent infusionoptimal infusion
spellingShingle Xiangqing Song
Mi Han
Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion Mode
Frontiers in Cellular and Infection Microbiology
vancomycin
methicillin-resistant Staphylococcus aureus
pharmacokinetic/pharmacodynamic
continuous infusion
intermittent infusion
optimal infusion
title Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion Mode
title_full Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion Mode
title_fullStr Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion Mode
title_full_unstemmed Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion Mode
title_short Pharmacokinetic/Pharmacodynamic Target Attainment of Vancomycin, at Three Reported Infusion Modes, for Methicillin-Resistant Staphylococcus aureus (MRSA) Bloodstream Infections in Critically Ill Patients: Focus on Novel Infusion Mode
title_sort pharmacokinetic pharmacodynamic target attainment of vancomycin at three reported infusion modes for methicillin resistant staphylococcus aureus mrsa bloodstream infections in critically ill patients focus on novel infusion mode
topic vancomycin
methicillin-resistant Staphylococcus aureus
pharmacokinetic/pharmacodynamic
continuous infusion
intermittent infusion
optimal infusion
url https://www.frontiersin.org/articles/10.3389/fcimb.2022.874401/full
work_keys_str_mv AT xiangqingsong pharmacokineticpharmacodynamictargetattainmentofvancomycinatthreereportedinfusionmodesformethicillinresistantstaphylococcusaureusmrsabloodstreaminfectionsincriticallyillpatientsfocusonnovelinfusionmode
AT mihan pharmacokineticpharmacodynamictargetattainmentofvancomycinatthreereportedinfusionmodesformethicillinresistantstaphylococcusaureusmrsabloodstreaminfectionsincriticallyillpatientsfocusonnovelinfusionmode