Proteome and Ubiquitylome Analyses of Maize Endoplasmic Reticulum under Heat Stress

High temperatures severely affect plant growth and pose a threat to global crop production. Heat causes the accumulation of misfolded proteins in the endoplasmic reticulum(ER), as well as triggering the heat-shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the ER. Exces...

Full description

Bibliographic Details
Main Authors: Chunyan Gao, Xiaohui Peng, Luoying Zhang, Qi Zhao, Liguo Ma, Qi Yu, Xuechun Lian, Lei Gao, Langyu Xiong, Shengben Li
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/14/3/749
Description
Summary:High temperatures severely affect plant growth and pose a threat to global crop production. Heat causes the accumulation of misfolded proteins in the endoplasmic reticulum(ER), as well as triggering the heat-shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the ER. Excessive misfolded proteins undergo further degradation through ER-associated degradation (ERAD). Although much research on the plant heat stress response has been conducted, the regulation of ER-localized proteins has not been well-studied thus far. We isolated the microsome fraction from heat-treated and untreated maize seedlings and performed proteome and ubiquitylome analyses. Of the 8306 total proteins detected in the proteomics analysis, 1675 proteins were significantly up-regulated and 708 proteins were significantly down-regulated. Global ubiquitination analysis revealed 1780 proteins with at least one ubiquitination site. Motif analysis revealed that alanine and glycine are the preferred amino acids upstream and downstream of ubiquitinated lysine sites. ERAD components were found to be hyper-ubiquitinated after heat treatment, implying the feedback regulation of ERAD activity through protein degradation.
ISSN:2073-4425