Monitoring of Pentoxifylline Thermal Behavior by Novel Simultaneous Laboratory Small and Wide X-Ray Scattering (SWAXS) and Differential Scanning Calorimetry (DSC).

The thermal and structural evolutions associated to active pharmaceutical ingredient (API) purity are monitored using a laboratory instrument (S3-MicroCaliX) allowing simultaneous time-resolved X-ray scattering at both wide and small angles (SWAXS) as a function of temperature. This is performed sim...

Full description

Bibliographic Details
Main Authors: Aden Hodzic, Manfred Kriechbaum, Simone Schrank, Franz Reiter
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4965141?pdf=render
Description
Summary:The thermal and structural evolutions associated to active pharmaceutical ingredient (API) purity are monitored using a laboratory instrument (S3-MicroCaliX) allowing simultaneous time-resolved X-ray scattering at both wide and small angles (SWAXS) as a function of temperature. This is performed simultaneously with differential scanning calorimetric (DSC) that is carried out in the same apparatus at scanning rate of 2 K/min on the same sample in the range from 20° to 200°C. We have studied simultaneous thermal and structural properties of pentoxifylline, as an active pharmaceutical ingredient (API), for its purity quality control. We have found a satisfying API purity, due to obtained melting temperature and enthalpy values, which are in a well agreement with literature. We have also found that the combination of these techniques allows the thermal monitoring of scanning rates of 2 K/min, continuously without the need for static thermal equilibration, particularly for X-ray spectra. Hence, DSC and SWAXS allowing better identification of the structural thermal events recorded by following of the phase transitions simultaneously. This interpretation is much better possible when X-ray scattering at small and wide angles is coupled with DSC from the same sample. Hence, as a laboratory tool, the method presents a reproducible thermal and crystallographic API purity quality control of non-complex samples, as crucial information for pharmaceutical technology.
ISSN:1932-6203