Thermal study on non-Newtonian fluids through a porous channel for turbine blades

The current paper aims to utilize non-Newtonian fluid and improve the cooling performance of turbine blades. To implement impinging fluid flow through a porous channel on a hot lower wall, in the first step, the rheology of non-Newtonian behavior is introduced. Then differential quadrature procedure...

Full description

Bibliographic Details
Main Authors: Chao-zhe Zhu, M. Nematipour, Rahim Bina, H. Fayaz
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X23004914
Description
Summary:The current paper aims to utilize non-Newtonian fluid and improve the cooling performance of turbine blades. To implement impinging fluid flow through a porous channel on a hot lower wall, in the first step, the rheology of non-Newtonian behavior is introduced. Then differential quadrature procedure is used to convert these highly nonlinear equations of motion to some simple algebraic expressions. There is a reasonable agreement between the present findings with previous research work. Finally, some vital parameters such as the cross-viscosity parameter and power law index are changed to evaluate how these factors improve the cooling performance of turbine blades. The findings show that a rising Prandtle number results in a 19% decrement in temperature pattern. For a constant cross-viscosity parameter, Reynolds number enhancement leads to wall friction augmentation of around 15%. Moreover, a 32% Nusselt number increment is observed by increasing the power law index for the same Reynolds number.
ISSN:2214-157X