Certain Weighted Fractional Inequalities via the Caputo–Fabrizio Approach

The Caputo–Fabrizio fractional integral operator is one of the important notions of fractional calculus. It is involved in numerous illustrative and practical issues. The main goal of this paper is to investigate weighted fractional integral inequalities using the Caputo–Fabrizio fractional integral...

Full description

Bibliographic Details
Main Authors: Vaijanath L. Chinchane, Asha B. Nale, Satish K. Panchal, Christophe Chesneau
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/9/495
Description
Summary:The Caputo–Fabrizio fractional integral operator is one of the important notions of fractional calculus. It is involved in numerous illustrative and practical issues. The main goal of this paper is to investigate weighted fractional integral inequalities using the Caputo–Fabrizio fractional integral operator with non-singular <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>e</mi><mrow><mo>−</mo><mfenced separators="" open="(" close=")"><mfrac><mrow><mn>1</mn><mo>−</mo><mi>δ</mi></mrow><mi>δ</mi></mfrac></mfenced><mrow><mo>(</mo><mi>ϰ</mi><mo>−</mo><mi>s</mi><mo>)</mo></mrow></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Furthermore, based on a family of <i>n</i> positive functions defined on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula>, we investigate some new extensions of weighted fractional integral inequalities.
ISSN:2504-3110