A Robust and Automatic Algorithm for TLS–ALS Point Cloud Registration in Forest Environments Based on Tree Locations

Fusing of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) point cloud data has been recognized as an effective approach in forest studies. In this regard, co-registration of point clouds is considered one of the crucial steps in the integration process. Co-registering point clouds...

Full description

Bibliographic Details
Main Authors: Fariborz Ghorbani, Yi-Chen Chen, Markus Hollaus, Norbert Pfeifer
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10401975/
Description
Summary:Fusing of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) point cloud data has been recognized as an effective approach in forest studies. In this regard, co-registration of point clouds is considered one of the crucial steps in the integration process. Co-registering point clouds in forest environments faces various challenges, including unstable features, extensive occlusions, different viewpoints, and differences in point cloud densities. To address these intricate challenges, this study introduces an automated and robust method for co-registering TLS and ALS point clouds based on the correspondence of individual tree locations in forest environments. Initially, the positions of individual trees in both TLS and ALS data are extracted. Then, a filtering approach is applied to eliminate positions with low potential for corresponding matches in the TLS and ALS dataset. Since larger trees in the TLS data have a higher potential for corresponding matches in the ALS data, an iterative process is applied to identify correspondences between trees in both datasets. After estimating transformation parameters, the co-registration process is executed. The proposed method is applied on six datasets with varying forest complexities. The results demonstrate a high success rate up to 100% if the starting position of the TLS plots are located within ∼4 hectares (∼2000 trees). Additionally, the potential of the proposed method for co-registering TLS data with ALS data across different search areas and varying number of trees is evaluated in detail. The outcomes indicate that successful co-registration of TLS plot with 50 m diameter to ALS data is successful in the best case within a search radius of approximately 113 hectares (∼60,000 tree locations) and in the worst case for around 20 hectares (∼10,000 tree locations) depending on the forest complexity.
ISSN:2151-1535