Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse...

Full description

Bibliographic Details
Main Authors: Patrizia Ratano, Germana Cocozza, Cecilia Pinchera, Ludovica Maria Busdraghi, Iva Cantando, Katiuscia Martinello, Mariarosaria Scioli, Maria Rosito, Paola Bezzi, Sergio Fucile, Heike Wulff, Cristina Limatola, Giuseppina D’Alessandro
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-01-01
Series:Frontiers in Molecular Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnmol.2023.1333745/full
_version_ 1827381107195117568
author Patrizia Ratano
Germana Cocozza
Cecilia Pinchera
Ludovica Maria Busdraghi
Iva Cantando
Katiuscia Martinello
Mariarosaria Scioli
Maria Rosito
Paola Bezzi
Paola Bezzi
Sergio Fucile
Sergio Fucile
Heike Wulff
Cristina Limatola
Cristina Limatola
Giuseppina D’Alessandro
Giuseppina D’Alessandro
author_facet Patrizia Ratano
Germana Cocozza
Cecilia Pinchera
Ludovica Maria Busdraghi
Iva Cantando
Katiuscia Martinello
Mariarosaria Scioli
Maria Rosito
Paola Bezzi
Paola Bezzi
Sergio Fucile
Sergio Fucile
Heike Wulff
Cristina Limatola
Cristina Limatola
Giuseppina D’Alessandro
Giuseppina D’Alessandro
author_sort Patrizia Ratano
collection DOAJ
description Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.
first_indexed 2024-03-08T13:50:22Z
format Article
id doaj.art-7b0c83b8d0b3491eaf2f6c242eacace9
institution Directory Open Access Journal
issn 1662-5099
language English
last_indexed 2024-03-08T13:50:22Z
publishDate 2024-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Molecular Neuroscience
spelling doaj.art-7b0c83b8d0b3491eaf2f6c242eacace92024-01-16T04:30:45ZengFrontiers Media S.A.Frontiers in Molecular Neuroscience1662-50992024-01-011610.3389/fnmol.2023.13337451333745Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3Patrizia Ratano0Germana Cocozza1Cecilia Pinchera2Ludovica Maria Busdraghi3Iva Cantando4Katiuscia Martinello5Mariarosaria Scioli6Maria Rosito7Paola Bezzi8Paola Bezzi9Sergio Fucile10Sergio Fucile11Heike Wulff12Cristina Limatola13Cristina Limatola14Giuseppina D’Alessandro15Giuseppina D’Alessandro16IRCCS Neuromed, Pozzilli, ItalyDepartment of Physiology and Pharmacology, University of Rome Sapienza, Rome, ItalyIRCCS Neuromed, Pozzilli, ItalyDepartment of Physiology and Pharmacology, University of Rome Sapienza, Rome, ItalyDepartment of Fundamental Neurosciences, University of Lausanne, Lausanne, SwitzerlandIRCCS Neuromed, Pozzilli, ItalyIRCCS Neuromed, Pozzilli, ItalyDepartment of Physiology and Pharmacology, University of Rome Sapienza, Rome, ItalyDepartment of Physiology and Pharmacology, University of Rome Sapienza, Rome, ItalyDepartment of Fundamental Neurosciences, University of Lausanne, Lausanne, SwitzerlandIRCCS Neuromed, Pozzilli, ItalyDepartment of Physiology and Pharmacology, University of Rome Sapienza, Rome, ItalyDepartment of Pharmacology, University of California Davis, Health Sciences Drive, Davis, CA, United StatesIRCCS Neuromed, Pozzilli, ItalyDepartment of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, ItalyIRCCS Neuromed, Pozzilli, ItalyDepartment of Physiology and Pharmacology, University of Rome Sapienza, Rome, ItalyAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.https://www.frontiersin.org/articles/10.3389/fnmol.2023.1333745/fullALSmutant SOD1Kv1.3 channelsmitochondriainflammation
spellingShingle Patrizia Ratano
Germana Cocozza
Cecilia Pinchera
Ludovica Maria Busdraghi
Iva Cantando
Katiuscia Martinello
Mariarosaria Scioli
Maria Rosito
Paola Bezzi
Paola Bezzi
Sergio Fucile
Sergio Fucile
Heike Wulff
Cristina Limatola
Cristina Limatola
Giuseppina D’Alessandro
Giuseppina D’Alessandro
Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3
Frontiers in Molecular Neuroscience
ALS
mutant SOD1
Kv1.3 channels
mitochondria
inflammation
title Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3
title_full Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3
title_fullStr Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3
title_full_unstemmed Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3
title_short Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3
title_sort reduction of inflammation and mitochondrial degeneration in mutant sod1 mice through inhibition of voltage gated potassium channel kv1 3
topic ALS
mutant SOD1
Kv1.3 channels
mitochondria
inflammation
url https://www.frontiersin.org/articles/10.3389/fnmol.2023.1333745/full
work_keys_str_mv AT patriziaratano reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT germanacocozza reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT ceciliapinchera reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT ludovicamariabusdraghi reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT ivacantando reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT katiusciamartinello reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT mariarosariascioli reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT mariarosito reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT paolabezzi reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT paolabezzi reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT sergiofucile reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT sergiofucile reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT heikewulff reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT cristinalimatola reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT cristinalimatola reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT giuseppinadalessandro reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13
AT giuseppinadalessandro reductionofinflammationandmitochondrialdegenerationinmutantsod1micethroughinhibitionofvoltagegatedpotassiumchannelkv13