On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms

We prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type u″−M(∫Ω|∇u|2dx)Δu+a(x)g(u′)+f(u)=0, in Ω×]0,+∞[, u=0, on Γ×]0,+∞[,u(x,0)=u0(x),u′(x,0)=u1(x), in Ω....

Full description

Bibliographic Details
Main Authors: E. Cabanillas Lapa, Z. Huaringa Segura, F. Leon Barboza
Format: Article
Language:English
Published: Hindawi Limited 2005-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/JAM.2005.219
_version_ 1827001816431198208
author E. Cabanillas Lapa
Z. Huaringa Segura
F. Leon Barboza
author_facet E. Cabanillas Lapa
Z. Huaringa Segura
F. Leon Barboza
author_sort E. Cabanillas Lapa
collection DOAJ
description We prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type u″−M(∫Ω|∇u|2dx)Δu+a(x)g(u′)+f(u)=0, in Ω×]0,+∞[, u=0, on Γ×]0,+∞[,u(x,0)=u0(x),u′(x,0)=u1(x), in Ω.
first_indexed 2024-04-12T13:55:55Z
format Article
id doaj.art-7b1467d689894e38a1cfab2568ca7029
institution Directory Open Access Journal
issn 1110-757X
1687-0042
language English
last_indexed 2025-02-18T11:04:00Z
publishDate 2005-01-01
publisher Hindawi Limited
record_format Article
series Journal of Applied Mathematics
spelling doaj.art-7b1467d689894e38a1cfab2568ca70292024-11-02T05:24:23ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422005-01-012005321923310.1155/JAM.2005.219On the global solvability of solutions to a quasilinear wave equation with localized damping and source termsE. Cabanillas Lapa0Z. Huaringa Segura1F. Leon Barboza2Instituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, PeruInstituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, PeruInstituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, PeruWe prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type u″−M(∫Ω|∇u|2dx)Δu+a(x)g(u′)+f(u)=0, in Ω×]0,+∞[, u=0, on Γ×]0,+∞[,u(x,0)=u0(x),u′(x,0)=u1(x), in Ω.http://dx.doi.org/10.1155/JAM.2005.219
spellingShingle E. Cabanillas Lapa
Z. Huaringa Segura
F. Leon Barboza
On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
Journal of Applied Mathematics
title On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_full On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_fullStr On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_full_unstemmed On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_short On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_sort on the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
url http://dx.doi.org/10.1155/JAM.2005.219
work_keys_str_mv AT ecabanillaslapa ontheglobalsolvabilityofsolutionstoaquasilinearwaveequationwithlocalizeddampingandsourceterms
AT zhuaringasegura ontheglobalsolvabilityofsolutionstoaquasilinearwaveequationwithlocalizeddampingandsourceterms
AT fleonbarboza ontheglobalsolvabilityofsolutionstoaquasilinearwaveequationwithlocalizeddampingandsourceterms