Remaining Useful Life Estimation of Rotating Machines through Supervised Learning with Non-Linear Approaches

Bearings are one of the most common causes of failure for rotating electric machines. Intelligent condition-based monitoring (CbM) can be used to predict rolling element bearing fault modes using non-invasive and inexpensive sensing. Strategically placed accelerometers can acquire bearing vibration...

Full description

Bibliographic Details
Main Authors: Eoghan T. Chelmiah, Violeta I. McLoone, Darren F. Kavanagh
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/9/4136
Description
Summary:Bearings are one of the most common causes of failure for rotating electric machines. Intelligent condition-based monitoring (CbM) can be used to predict rolling element bearing fault modes using non-invasive and inexpensive sensing. Strategically placed accelerometers can acquire bearing vibration signals, which contain salient prognostic information regarding the state of health. Machine learning (ML) algorithms are currently being investigated to accurately predict the health of machines and equipment in real time. This is highly advantageous towards reducing unscheduled maintenance, increasing the operational lifetime, as well as mitigation of the associated health risks caused by catastrophic machine failure. Motivated by this, a robust CbM system is presented for rotating machines that is suitable for various industrial applications. Novel non-linear methods for both feature engineering (one-third octave bands) and wear-state modelling (exponential) are investigated. The paper compares two main types of feature extraction, which are derived from Short-Time Fourier Transform (STFT) and Envelope Analysis (EA). In addition, two types of supervised learning, Support Vector Machines (SVM) and <i>k</i>-Nearest Neighbour (<i>k</i>-NN) are explored. The work is tested and validated on the PRONOSTIA platform dataset, with remaining useful life (RUL) classification results of up to 74.3% and a mean absolute error of 0.08 achieved.
ISSN:2076-3417