Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows

This paper presents a new family of semi-implicit hybrid finite volume/finite element schemes on edge-based staggered meshes for the numerical solution of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations in combination with the <inline-formula><math xmlns="http://www...

Full description

Bibliographic Details
Main Authors: Saray Busto, Michael Dumbser, Laura Río-Martín
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/22/2972
_version_ 1797509448820850688
author Saray Busto
Michael Dumbser
Laura Río-Martín
author_facet Saray Busto
Michael Dumbser
Laura Río-Martín
author_sort Saray Busto
collection DOAJ
description This paper presents a new family of semi-implicit hybrid finite volume/finite element schemes on edge-based staggered meshes for the numerical solution of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations in combination with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow></semantics></math></inline-formula> turbulence model. The rheology for calculating the laminar viscosity coefficient under consideration in this work is the one of a non-Newtonian Herschel–Bulkley (power-law) fluid with yield stress, which includes the Bingham fluid and classical Newtonian fluids as special cases. For the spatial discretization, we use edge-based staggered unstructured simplex meshes, as well as staggered non-uniform Cartesian grids. In order to get a simple and computationally efficient algorithm, we apply an operator splitting technique, where the hyperbolic convective terms of the RANS equations are discretized explicitly at the aid of a Godunov-type finite volume scheme, while the viscous parabolic terms, the elliptic pressure terms and the stiff algebraic source terms of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow></semantics></math></inline-formula> model are discretized implicitly. For the discretization of the elliptic pressure Poisson equation, we use classical conforming <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">P</mi><mn>1</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Q</mi><mn>1</mn></msup></semantics></math></inline-formula> finite elements on triangles and rectangles, respectively. The implicit discretization of the viscous terms is mandatory for non-Newtonian fluids, since the apparent viscosity can tend to infinity for fluids with yield stress and certain power-law fluids. It is carried out with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">P</mi><mn>1</mn></msup></semantics></math></inline-formula> finite elements on triangular simplex meshes and with finite volumes on rectangles. For Cartesian grids and more general orthogonal unstructured meshes, we can prove that our new scheme can preserve the <i>positivity</i> of <i>k</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>. This is achieved via a special implicit discretization of the stiff algebraic relaxation source terms, using a suitable combination of the discrete evolution equations for the logarithms of <i>k</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>. The method is applied to some classical academic benchmark problems for non-Newtonian and turbulent flows in two space dimensions, comparing the obtained numerical results with available exact or numerical reference solutions. In all cases, an excellent agreement is observed.
first_indexed 2024-03-10T05:18:52Z
format Article
id doaj.art-7b27aa41c6994065aa50f9c2c3e1b588
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T05:18:52Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-7b27aa41c6994065aa50f9c2c3e1b5882023-11-23T00:15:52ZengMDPI AGMathematics2227-73902021-11-01922297210.3390/math9222972Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian FlowsSaray Busto0Michael Dumbser1Laura Río-Martín2Departamento de Matemática Aplicada a la Ingeniería Industrial, Universidad Politécnica de Madrid, José Gutierrez Abascal 2, 28006 Madrid, SpainLaboratory of Applied Mathematics, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, ItalyLaboratory of Applied Mathematics, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, ItalyThis paper presents a new family of semi-implicit hybrid finite volume/finite element schemes on edge-based staggered meshes for the numerical solution of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations in combination with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow></semantics></math></inline-formula> turbulence model. The rheology for calculating the laminar viscosity coefficient under consideration in this work is the one of a non-Newtonian Herschel–Bulkley (power-law) fluid with yield stress, which includes the Bingham fluid and classical Newtonian fluids as special cases. For the spatial discretization, we use edge-based staggered unstructured simplex meshes, as well as staggered non-uniform Cartesian grids. In order to get a simple and computationally efficient algorithm, we apply an operator splitting technique, where the hyperbolic convective terms of the RANS equations are discretized explicitly at the aid of a Godunov-type finite volume scheme, while the viscous parabolic terms, the elliptic pressure terms and the stiff algebraic source terms of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow></semantics></math></inline-formula> model are discretized implicitly. For the discretization of the elliptic pressure Poisson equation, we use classical conforming <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">P</mi><mn>1</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Q</mi><mn>1</mn></msup></semantics></math></inline-formula> finite elements on triangles and rectangles, respectively. The implicit discretization of the viscous terms is mandatory for non-Newtonian fluids, since the apparent viscosity can tend to infinity for fluids with yield stress and certain power-law fluids. It is carried out with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">P</mi><mn>1</mn></msup></semantics></math></inline-formula> finite elements on triangular simplex meshes and with finite volumes on rectangles. For Cartesian grids and more general orthogonal unstructured meshes, we can prove that our new scheme can preserve the <i>positivity</i> of <i>k</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>. This is achieved via a special implicit discretization of the stiff algebraic relaxation source terms, using a suitable combination of the discrete evolution equations for the logarithms of <i>k</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>. The method is applied to some classical academic benchmark problems for non-Newtonian and turbulent flows in two space dimensions, comparing the obtained numerical results with available exact or numerical reference solutions. In all cases, an excellent agreement is observed.https://www.mdpi.com/2227-7390/9/22/2972hybrid finite volume/finite element methodsemi-implicit schemesstaggered unstructured and Cartesian meshespositivity preserving schemesincompressible RANSrealizable <i>k</i> − <i>ε</i> turbulence model
spellingShingle Saray Busto
Michael Dumbser
Laura Río-Martín
Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows
Mathematics
hybrid finite volume/finite element method
semi-implicit schemes
staggered unstructured and Cartesian meshes
positivity preserving schemes
incompressible RANS
realizable <i>k</i> − <i>ε</i> turbulence model
title Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows
title_full Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows
title_fullStr Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows
title_full_unstemmed Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows
title_short Staggered Semi-Implicit Hybrid Finite Volume/Finite Element Schemes for Turbulent and Non-Newtonian Flows
title_sort staggered semi implicit hybrid finite volume finite element schemes for turbulent and non newtonian flows
topic hybrid finite volume/finite element method
semi-implicit schemes
staggered unstructured and Cartesian meshes
positivity preserving schemes
incompressible RANS
realizable <i>k</i> − <i>ε</i> turbulence model
url https://www.mdpi.com/2227-7390/9/22/2972
work_keys_str_mv AT saraybusto staggeredsemiimplicithybridfinitevolumefiniteelementschemesforturbulentandnonnewtonianflows
AT michaeldumbser staggeredsemiimplicithybridfinitevolumefiniteelementschemesforturbulentandnonnewtonianflows
AT laurariomartin staggeredsemiimplicithybridfinitevolumefiniteelementschemesforturbulentandnonnewtonianflows