On Chaos and Complexity Analysis for a New Sine-Based Memristor Map with Commensurate and Incommensurate Fractional Orders

In this study, we expand a 2D sine map via adding the discrete memristor to introduce a new 3D fractional-order sine-based memristor map. Under commensurate and incommensurate orders, we conduct an extensive exploration and analysis of its nonlinear dynamic behaviors, employing diverse numerical tec...

Full description

Bibliographic Details
Main Authors: Tareq Hamadneh, Abderrahmane Abbes, Hassan Al-Tarawneh, Gharib Mousa Gharib, Wael Mahmoud Mohammad Salameh, Maha S. Al Soudi, Adel Ouannas
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/20/4308
Description
Summary:In this study, we expand a 2D sine map via adding the discrete memristor to introduce a new 3D fractional-order sine-based memristor map. Under commensurate and incommensurate orders, we conduct an extensive exploration and analysis of its nonlinear dynamic behaviors, employing diverse numerical techniques, such as analyzing Lyapunov exponents, visualizing phase portraits, and plotting bifurcation diagrams. The results emphasize the sine-based memristor map’s sensitivity to fractional-order parameters, resulting in the emergence of distinct and diverse dynamic patterns. In addition, we employ the sample entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>E</mi><mi>n</mi></mrow></semantics></math></inline-formula>) method and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mn>0</mn></msub></semantics></math></inline-formula> complexity to quantitatively measure complexity, and we also utilize the 0–1 test to validate the presence of chaos in the proposed fractional-order sine-based memristor map. Finally, MATLAB simulations are be executed to confirm the results provided.
ISSN:2227-7390