On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性)
为了解决不可导方程的求根问题以及在实际应用方面的考虑,在韩丹夫一文收敛条件的基础上,提出了用修正的牛顿方法来解决不可导方程的求根问题,并且用优序列方法给出了收敛性理论,由于方程本身的限制,所得到的结果是线性收敛的....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2003-05-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2003.30.3.256-259 |
_version_ | 1797236372777467904 |
---|---|
author | JIANGDong-dong(蒋冬冬) SHENShuo(沈硕) NIWei-cai(倪伟才) |
author_facet | JIANGDong-dong(蒋冬冬) SHENShuo(沈硕) NIWei-cai(倪伟才) |
author_sort | JIANGDong-dong(蒋冬冬) |
collection | DOAJ |
description | 为了解决不可导方程的求根问题以及在实际应用方面的考虑,在韩丹夫一文收敛条件的基础上,提出了用修正的牛顿方法来解决不可导方程的求根问题,并且用优序列方法给出了收敛性理论,由于方程本身的限制,所得到的结果是线性收敛的. |
first_indexed | 2024-04-24T17:02:49Z |
format | Article |
id | doaj.art-7b323a376b8c4c4aa874b708ccf9a11b |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T17:02:49Z |
publishDate | 2003-05-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-7b323a376b8c4c4aa874b708ccf9a11b2024-03-29T01:58:20ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972003-05-01303256259zjup/1008-9497.2003.30.3.256-259On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性)JIANGDong-dong(蒋冬冬)0SHENShuo(沈硕)1NIWei-cai(倪伟才)2 1.Department of Mathematics, Zhejiang University, Hangzhou 310028, China( 1.浙江大学数学系,浙江 杭州 310028) 1.Department of Mathematics, Zhejiang University, Hangzhou 310028, China( 1.浙江大学数学系,浙江 杭州 310028) 1.Department of Mathematics, Zhejiang University, Hangzhou 310028, China( 1.浙江大学数学系,浙江 杭州 310028)为了解决不可导方程的求根问题以及在实际应用方面的考虑,在韩丹夫一文收敛条件的基础上,提出了用修正的牛顿方法来解决不可导方程的求根问题,并且用优序列方法给出了收敛性理论,由于方程本身的限制,所得到的结果是线性收敛的.https://doi.org/zjup/1008-9497.2003.30.3.256-259修正的牛顿法不可导算子优序列banach空间 |
spellingShingle | JIANGDong-dong(蒋冬冬) SHENShuo(沈硕) NIWei-cai(倪伟才) On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性) Zhejiang Daxue xuebao. Lixue ban 修正的牛顿法 不可导算子 优序列 banach空间 |
title | On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性) |
title_full | On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性) |
title_fullStr | On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性) |
title_full_unstemmed | On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性) |
title_short | On a modified Newton's method and convergence in Banach space(求解不可导方程的修正牛顿迭代及其在Banach空间中的收敛性) |
title_sort | on a modified newton s method and convergence in banach space 求解不可导方程的修正牛顿迭代及其在banach空间中的收敛性 |
topic | 修正的牛顿法 不可导算子 优序列 banach空间 |
url | https://doi.org/zjup/1008-9497.2003.30.3.256-259 |
work_keys_str_mv | AT jiangdongdongjiǎngdōngdōng onamodifiednewtonsmethodandconvergenceinbanachspaceqiújiěbùkědǎofāngchéngdexiūzhèngniúdùndiédàijíqízàibanachkōngjiānzhōngdeshōuliǎnxìng AT shenshuoshěnshuò onamodifiednewtonsmethodandconvergenceinbanachspaceqiújiěbùkědǎofāngchéngdexiūzhèngniúdùndiédàijíqízàibanachkōngjiānzhōngdeshōuliǎnxìng AT niweicainíwěicái onamodifiednewtonsmethodandconvergenceinbanachspaceqiújiěbùkědǎofāngchéngdexiūzhèngniúdùndiédàijíqízàibanachkōngjiānzhōngdeshōuliǎnxìng |