GW-DC: A Deep Clustering Model Leveraging Two-Dimensional Image Transformation and Enhancement

Traditional time-series clustering methods usually perform poorly on high-dimensional data. However, image clustering using deep learning methods can complete image annotation and searches in large image databases well. Therefore, this study aimed to propose a deep clustering model named GW_DC to co...

Full description

Bibliographic Details
Main Authors: Xutong Li, Taoying Li, Yan Wang
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/14/12/349
Description
Summary:Traditional time-series clustering methods usually perform poorly on high-dimensional data. However, image clustering using deep learning methods can complete image annotation and searches in large image databases well. Therefore, this study aimed to propose a deep clustering model named GW_DC to convert one-dimensional time-series into two-dimensional images and improve cluster performance for algorithm users. The proposed GW_DC consisted of three processing stages: the image conversion stage, image enhancement stage, and image clustering stage. In the image conversion stage, the time series were converted into four kinds of two-dimensional images by different algorithms, including grayscale images, recurrence plot images, Markov transition field images, and Gramian Angular Difference Field images; this last one was considered to be the best by comparison. In the image enhancement stage, the signal components of two-dimensional images were extracted and processed by wavelet transform to denoise and enhance texture features. Meanwhile, a deep clustering network, combining convolutional neural networks with K-Means, was designed for well-learning characteristics and clustering according to the aforementioned enhanced images. Finally, six UCR datasets were adopted to assess the performance of models. The results showed that the proposed GW_DC model provided better results.
ISSN:1999-4893