The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons

<p>The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring <span class="inline-formula">∼34</span> million years ago (Ma) and...

Full description

Bibliographic Details
Main Authors: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, Z. Zhang
Format: Article
Language:English
Published: Copernicus Publications 2021-01-01
Series:Climate of the Past
Online Access:https://cp.copernicus.org/articles/17/269/2021/cp-17-269-2021.pdf
_version_ 1818734704887595008
author D. K. Hutchinson
H. K. Coxall
D. J. Lunt
M. Steinthorsdottir
M. Steinthorsdottir
A. M. de Boer
M. Baatsen
A. von der Heydt
A. von der Heydt
M. Huber
A. T. Kennedy-Asser
L. Kunzmann
J.-B. Ladant
C. H. Lear
K. Moraweck
P. N. Pearson
E. Piga
M. J. Pound
U. Salzmann
H. D. Scher
W. P. Sijp
K. K. Śliwińska
P. A. Wilson
Z. Zhang
Z. Zhang
author_facet D. K. Hutchinson
H. K. Coxall
D. J. Lunt
M. Steinthorsdottir
M. Steinthorsdottir
A. M. de Boer
M. Baatsen
A. von der Heydt
A. von der Heydt
M. Huber
A. T. Kennedy-Asser
L. Kunzmann
J.-B. Ladant
C. H. Lear
K. Moraweck
P. N. Pearson
E. Piga
M. J. Pound
U. Salzmann
H. D. Scher
W. P. Sijp
K. K. Śliwińska
P. A. Wilson
Z. Zhang
Z. Zhang
author_sort D. K. Hutchinson
collection DOAJ
description <p>The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring <span class="inline-formula">∼34</span> million years ago (Ma) and lasting <span class="inline-formula">∼790</span> <span class="inline-formula">kyr</span>. The change is marked by a global shift in deep-sea <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean temperature indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate-adapted species. The two principal suggested explanations of this transition are a decline in atmospheric <span class="inline-formula">CO<sub>2</sub></span> and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and <span class="inline-formula">CO<sub>2</sub></span> change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: <span class="inline-formula">CO<sub>2</sub></span> decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that <span class="inline-formula">CO<sub>2</sub></span> forcing involving a large decrease in <span class="inline-formula">CO<sub>2</sub></span> of ca. 40 % (<span class="inline-formula">∼325</span> <span class="inline-formula">ppm</span> drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes playing a secondary role. While this large decrease is consistent with some <span class="inline-formula">CO<sub>2</sub></span> proxy records (the extreme endmember of<span id="page270"/> decrease), the positive feedback mechanisms on ice growth are so strong that a modest <span class="inline-formula">CO<sub>2</sub></span> decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of <span class="inline-formula">CO<sub>2</sub></span> decrease signalled by our data–model comparison should be considered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not include dynamic ice sheets and in some cases may be under-sensitive to <span class="inline-formula">CO<sub>2</sub></span> forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in <span class="inline-formula">CO<sub>2</sub></span>.</p>
first_indexed 2024-12-18T00:09:36Z
format Article
id doaj.art-7b4ca81a6eb84d0a8275a4fd2dba06c9
institution Directory Open Access Journal
issn 1814-9324
1814-9332
language English
last_indexed 2024-12-18T00:09:36Z
publishDate 2021-01-01
publisher Copernicus Publications
record_format Article
series Climate of the Past
spelling doaj.art-7b4ca81a6eb84d0a8275a4fd2dba06c92022-12-21T21:27:43ZengCopernicus PublicationsClimate of the Past1814-93241814-93322021-01-011726931510.5194/cp-17-269-2021The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisonsD. K. Hutchinson0H. K. Coxall1D. J. Lunt2M. Steinthorsdottir3M. Steinthorsdottir4A. M. de Boer5M. Baatsen6A. von der Heydt7A. von der Heydt8M. Huber9A. T. Kennedy-Asser10L. Kunzmann11J.-B. Ladant12C. H. Lear13K. Moraweck14P. N. Pearson15E. Piga16M. J. Pound17U. Salzmann18H. D. Scher19W. P. Sijp20K. K. Śliwińska21P. A. Wilson22Z. Zhang23Z. Zhang24Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, SwedenDepartment of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, SwedenSchool of Geographical Sciences, University of Bristol, Bristol, UKDepartment of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, SwedenDepartment of Palaeobiology, Swedish Museum of Natural History, Stockholm, SwedenDepartment of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, SwedenInstitute for Marine and Atmospheric Research, Department of Physics, Utrecht University, Utrecht, the NetherlandsInstitute for Marine and Atmospheric Research, Department of Physics, Utrecht University, Utrecht, the NetherlandsCentre for Complex Systems Studies, Utrecht University, Utrecht, the NetherlandsDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, USASchool of Geographical Sciences, University of Bristol, Bristol, UKSenckenberg Natural History Collections, Dresden, GermanyDepartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, USASchool of Earth and Ocean Sciences, Cardiff University, Cardiff, UKSenckenberg Natural History Collections, Dresden, GermanySchool of Earth and Ocean Sciences, Cardiff University, Cardiff, UKSchool of Earth and Ocean Sciences, Cardiff University, Cardiff, UKDepartment of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UKDepartment of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UKSchool of the Earth, Ocean and Environment, University of South Carolina, Columbia SC, USAClimate Change Research Centre, University of New South Wales, Sydney, AustraliaDepartment of Stratigraphy, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, DenmarkUniversity of Southampton, National Oceanography Centre, Southampton, UKDepartment of Atmospheric Science, China University of Geoscience, Wuhan, ChinaNORCE Research and Bjerknes Centre for Climate Research, Bergen, Norway<p>The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring <span class="inline-formula">∼34</span> million years ago (Ma) and lasting <span class="inline-formula">∼790</span> <span class="inline-formula">kyr</span>. The change is marked by a global shift in deep-sea <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean temperature indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate-adapted species. The two principal suggested explanations of this transition are a decline in atmospheric <span class="inline-formula">CO<sub>2</sub></span> and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and <span class="inline-formula">CO<sub>2</sub></span> change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: <span class="inline-formula">CO<sub>2</sub></span> decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that <span class="inline-formula">CO<sub>2</sub></span> forcing involving a large decrease in <span class="inline-formula">CO<sub>2</sub></span> of ca. 40 % (<span class="inline-formula">∼325</span> <span class="inline-formula">ppm</span> drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes playing a secondary role. While this large decrease is consistent with some <span class="inline-formula">CO<sub>2</sub></span> proxy records (the extreme endmember of<span id="page270"/> decrease), the positive feedback mechanisms on ice growth are so strong that a modest <span class="inline-formula">CO<sub>2</sub></span> decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of <span class="inline-formula">CO<sub>2</sub></span> decrease signalled by our data–model comparison should be considered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not include dynamic ice sheets and in some cases may be under-sensitive to <span class="inline-formula">CO<sub>2</sub></span> forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in <span class="inline-formula">CO<sub>2</sub></span>.</p>https://cp.copernicus.org/articles/17/269/2021/cp-17-269-2021.pdf
spellingShingle D. K. Hutchinson
H. K. Coxall
D. J. Lunt
M. Steinthorsdottir
M. Steinthorsdottir
A. M. de Boer
M. Baatsen
A. von der Heydt
A. von der Heydt
M. Huber
A. T. Kennedy-Asser
L. Kunzmann
J.-B. Ladant
C. H. Lear
K. Moraweck
P. N. Pearson
E. Piga
M. J. Pound
U. Salzmann
H. D. Scher
W. P. Sijp
K. K. Śliwińska
P. A. Wilson
Z. Zhang
Z. Zhang
The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
Climate of the Past
title The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_full The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_fullStr The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_full_unstemmed The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_short The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_sort eocene oligocene transition a review of marine and terrestrial proxy data models and model data comparisons
url https://cp.copernicus.org/articles/17/269/2021/cp-17-269-2021.pdf
work_keys_str_mv AT dkhutchinson theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT hkcoxall theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT djlunt theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT msteinthorsdottir theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT msteinthorsdottir theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT amdeboer theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT mbaatsen theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT avonderheydt theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT avonderheydt theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT mhuber theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT atkennedyasser theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT lkunzmann theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT jbladant theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT chlear theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT kmoraweck theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT pnpearson theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT epiga theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT mjpound theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT usalzmann theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT hdscher theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT wpsijp theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT kksliwinska theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT pawilson theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT zzhang theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT zzhang theeoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT dkhutchinson eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT hkcoxall eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT djlunt eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT msteinthorsdottir eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT msteinthorsdottir eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT amdeboer eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT mbaatsen eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT avonderheydt eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT avonderheydt eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT mhuber eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT atkennedyasser eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT lkunzmann eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT jbladant eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT chlear eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT kmoraweck eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT pnpearson eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT epiga eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT mjpound eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT usalzmann eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT hdscher eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT wpsijp eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT kksliwinska eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT pawilson eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT zzhang eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons
AT zzhang eoceneoligocenetransitionareviewofmarineandterrestrialproxydatamodelsandmodeldatacomparisons