Gas-phase amination of aromatic hydrocarbons by corona discharge-assisted nitrogen fixation

Abstract This paper reports on the gas-phase amination reaction of aromatic hydrocarbons occurring under corona discharge conditions with N2 gas as the nitrogen source. The corona discharge device within an atmospheric pressure chemical ionization source was employed to achieve the plasma-assisted N...

Full description

Bibliographic Details
Main Authors: Shanshan Shen, Yunfeng Chai, Qirong Shen, You Jiang, Xiang Fang, Yuanjiang Pan
Format: Article
Language:English
Published: Nature Portfolio 2021-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-82190-8
Description
Summary:Abstract This paper reports on the gas-phase amination reaction of aromatic hydrocarbons occurring under corona discharge conditions with N2 gas as the nitrogen source. The corona discharge device within an atmospheric pressure chemical ionization source was employed to achieve the plasma-assisted N2 fixation, and the coupled ion trap mass spectrometer (IT-MS) was used to detect positively charged product ions. In the model case, under APCI conditions, unusual product ions, [M + 16]+ and [M + 14]+, were observed. Based on the high resolution MS data and tandem mass spectrometric information, [M + 16]+ was confirmed to be protonated p-toluidine and [M + 14]+ was confirmed to be p-methylphenylnitrenium ion. According to the experimental results of the isotopic labelling and substituent effect, one feasible mechanism is proposed as follows. Firstly, N2 is activated by plasma caused via the corona discharge and then electrophilically attacks toluene, yielding the key intermediate, p-methylphenylnitrenium; secondly, the intermediate undergoes double-hydrogen transfer reaction to give rise to the final product ion, protonated p-toluidine. This study may provide a novel idea to explore new and green method for the synthesis of anilines.
ISSN:2045-2322