Enhanced Collaborative Filtering for Personalized E-Government Recommendation
The problems with the information overload of e-government websites have been a big obstacle for users to make decisions. One promising approach to solve this problem is to deploy an intelligent recommendation system on e-government platforms. Collaborative filtering (CF) has shown its superiority b...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/24/12119 |
Summary: | The problems with the information overload of e-government websites have been a big obstacle for users to make decisions. One promising approach to solve this problem is to deploy an intelligent recommendation system on e-government platforms. Collaborative filtering (CF) has shown its superiority by characterizing both items and users by the latent features inferred from the user–item interaction matrix. A fundamental challenge is to enhance the expression of the user or/and item embedding latent features from the implicit feedback. This problem negatively affected the performance of the recommendation system in e-government. In this paper, we firstly propose to learn positive items’ latent features by leveraging both the negative item information and the original embedding features. We present the negative items mixed collaborative filtering (NMCF) method to enhance the CF-based recommender system. Such mixing information is beneficial for extending the expressiveness of the latent features. Comprehensive experimentation on a real-world e-government dataset showed that our approach improved the performance significantly compared with the state-of-the-art baseline algorithms. |
---|---|
ISSN: | 2076-3417 |