Functionalization of α-synuclein fibrils

The propensity of peptides and proteins to form self-assembled structures has very promising applications in the development of novel nanomaterials. Under certain conditions, amyloid protein α-synuclein forms well-ordered structures – fibrils, which have proven to be valuable building blocks for bio...

Full description

Bibliographic Details
Main Authors: Simona Povilonienė, Vida Časaitė, Virginijus Bukauskas, Arūnas Šetkus, Juozas Staniulis, Rolandas Meškys
Format: Article
Language:English
Published: Beilstein-Institut 2015-01-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.6.12
Description
Summary:The propensity of peptides and proteins to form self-assembled structures has very promising applications in the development of novel nanomaterials. Under certain conditions, amyloid protein α-synuclein forms well-ordered structures – fibrils, which have proven to be valuable building blocks for bionanotechnological approaches. Herein we demonstrate the functionalization of fibrils formed by a mutant α-synuclein that contains an additional cysteine residue. The fibrils have been biotinylated via thiol groups and subsequently joined with neutravidin-conjugated gold nanoparticles. Atomic force microscopy and transmission electron microscopy confirmed the expected structure – nanoladders. The ability of fibrils (and of the additional components) to assemble into such complex structures offers new opportunities for fabricating novel hybrid materials or devices.
ISSN:2190-4286