A Study on Fixed-Point Techniques under the <i>α</i>-<i>ϝ</i>-Convex Contraction with an Application

In this paper, we consider several classes of mappings related to the class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-fo...

Full description

Bibliographic Details
Main Authors: Gunasekaran Nallaselli, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Ozgur Ege, Dania Santina, Nabil Mlaiki
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/2/139
Description
Summary:In this paper, we consider several classes of mappings related to the class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϝ</mi></semantics></math></inline-formula>-contraction mappings by introducing a convexity condition and establish some fixed-point theorems for such mappings in complete metric spaces. The present result extends and generalizes the well-known results of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-admissible and convex contraction mapping and many others in the existing literature. An illustrative example is also provided to exhibit the utility of our main results. Finally, we derive the existence and uniqueness of a solution to an integral equation to support our main result and give a numerical example to validate the application of our obtained results.
ISSN:2075-1680