Load Flow and Short-Circuit Methods for Grids Dominated by Inverter-Based Distributed Generation

The use of power-electronics-based devices in distribution generation seeks to improve energy quality and reduce costs. The inverter-based distributed generator, that works in different operation modes, has emerged as a promising technology. In a high distributed generation penetration scenario it i...

Full description

Bibliographic Details
Main Authors: Luiz Guilherme Riva Tonini, Renato Santos Freire Ferraz, Oureste Elias Batista
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/13/4723
Description
Summary:The use of power-electronics-based devices in distribution generation seeks to improve energy quality and reduce costs. The inverter-based distributed generator, that works in different operation modes, has emerged as a promising technology. In a high distributed generation penetration scenario it is important to know the voltage profile and fault information due to the uncertainty in the generator operation and the impact that have on the network. This study aims to use two proposed methods of analysis: for power flow, based on backward/forward sweep method, and short-circuit, based on hybrid impedance matrix, that considers the inverter operation modes and represents each generator as a voltage-controlled current source. The chosen network is the IEEE 34-Node Test Feeder with a generator on each load per phase. The voltage profiles obtained will be validated with a Simulink/Matlab phasorial model. The results show an average error of 2.39% and a gain in voltage profile processing time of 2185.24%, making its use consistent for larger systems.
ISSN:1996-1073