Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen

Abstract In this study, the surface crack-propagation law and pore damage characteristics of coal samples of different water contents after they undergo leaching in liquid nitrogen are investigated using a 4 K scientific-research camera, HC-U7 non-metal ultrasonic detector, nuclear magnetic resonanc...

Full description

Bibliographic Details
Main Authors: Xiaoqi Wang, Xiaohan Qi, Heng Ma, Ke Gao, Shengnan Li
Format: Article
Language:English
Published: Nature Portfolio 2022-11-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-21961-3
_version_ 1797984677736218624
author Xiaoqi Wang
Xiaohan Qi
Heng Ma
Ke Gao
Shengnan Li
author_facet Xiaoqi Wang
Xiaohan Qi
Heng Ma
Ke Gao
Shengnan Li
author_sort Xiaoqi Wang
collection DOAJ
description Abstract In this study, the surface crack-propagation law and pore damage characteristics of coal samples of different water contents after they undergo leaching in liquid nitrogen are investigated using a 4 K scientific-research camera, HC-U7 non-metal ultrasonic detector, nuclear magnetic resonance testing technology, and self-made multi-functional three axial fluid–solid coupling test system. Experimental investigations are conducted on coal samples of different water contents before and after they undergo liquid-nitrogen freezing and thawing in order to determine the propagation law of surface fissures, the development law of internal micro-fissures, the development process of internal pores, the change law of the pore-size distribution, and the law of coal-sample deformation and gas seepage during the stress process. The test results show that, with the increase in water content in the liquid-nitrogen leaching process, the frost heave force on the coal surface increases, and the greater the increase ratio of the coal porosity, the faster is the development of micro-cracks and pores. Under the action of liquid nitrogen, the number of micro-pores, meso-pores, and macro-pores in the coal sample increased, and with the formation of new cracks and the connection of the original cracks, liquid-nitrogen freezing and thawing can promote the development of the pore structure in the coal body. The permeability changes of coal samples of different water contents during unloading failure exhibit obvious stage characteristics. The above results demonstrate that the moisture content of coal has a significant effect on the development of surface cracks and pore-damage characteristics of coal after liquid-nitrogen freezing and thawing, and there is a positive correlation between the surface crack expansion and internal damage of the coal samples of different moisture contents leached in liquid nitrogen.
first_indexed 2024-04-11T07:05:50Z
format Article
id doaj.art-7ba3c0da1ca74a779f1b3c0ea555a3c7
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-11T07:05:50Z
publishDate 2022-11-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-7ba3c0da1ca74a779f1b3c0ea555a3c72022-12-22T04:38:23ZengNature PortfolioScientific Reports2045-23222022-11-0112112110.1038/s41598-022-21961-3Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogenXiaoqi Wang0Xiaohan Qi1Heng Ma2Ke Gao3Shengnan Li4College of Safety Science and Engineering, Liaoning Technical UniversityCollege of Safety Science and Engineering, Liaoning Technical UniversityCollege of Safety Science and Engineering, Liaoning Technical UniversityCollege of Safety Science and Engineering, Liaoning Technical UniversityCollege of Safety Science and Engineering, Liaoning Technical UniversityAbstract In this study, the surface crack-propagation law and pore damage characteristics of coal samples of different water contents after they undergo leaching in liquid nitrogen are investigated using a 4 K scientific-research camera, HC-U7 non-metal ultrasonic detector, nuclear magnetic resonance testing technology, and self-made multi-functional three axial fluid–solid coupling test system. Experimental investigations are conducted on coal samples of different water contents before and after they undergo liquid-nitrogen freezing and thawing in order to determine the propagation law of surface fissures, the development law of internal micro-fissures, the development process of internal pores, the change law of the pore-size distribution, and the law of coal-sample deformation and gas seepage during the stress process. The test results show that, with the increase in water content in the liquid-nitrogen leaching process, the frost heave force on the coal surface increases, and the greater the increase ratio of the coal porosity, the faster is the development of micro-cracks and pores. Under the action of liquid nitrogen, the number of micro-pores, meso-pores, and macro-pores in the coal sample increased, and with the formation of new cracks and the connection of the original cracks, liquid-nitrogen freezing and thawing can promote the development of the pore structure in the coal body. The permeability changes of coal samples of different water contents during unloading failure exhibit obvious stage characteristics. The above results demonstrate that the moisture content of coal has a significant effect on the development of surface cracks and pore-damage characteristics of coal after liquid-nitrogen freezing and thawing, and there is a positive correlation between the surface crack expansion and internal damage of the coal samples of different moisture contents leached in liquid nitrogen.https://doi.org/10.1038/s41598-022-21961-3
spellingShingle Xiaoqi Wang
Xiaohan Qi
Heng Ma
Ke Gao
Shengnan Li
Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen
Scientific Reports
title Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen
title_full Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen
title_fullStr Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen
title_full_unstemmed Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen
title_short Experimental study on freeze–thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen
title_sort experimental study on freeze thaw damage characteristics of coal samples of different moisture contents in liquid nitrogen
url https://doi.org/10.1038/s41598-022-21961-3
work_keys_str_mv AT xiaoqiwang experimentalstudyonfreezethawdamagecharacteristicsofcoalsamplesofdifferentmoisturecontentsinliquidnitrogen
AT xiaohanqi experimentalstudyonfreezethawdamagecharacteristicsofcoalsamplesofdifferentmoisturecontentsinliquidnitrogen
AT hengma experimentalstudyonfreezethawdamagecharacteristicsofcoalsamplesofdifferentmoisturecontentsinliquidnitrogen
AT kegao experimentalstudyonfreezethawdamagecharacteristicsofcoalsamplesofdifferentmoisturecontentsinliquidnitrogen
AT shengnanli experimentalstudyonfreezethawdamagecharacteristicsofcoalsamplesofdifferentmoisturecontentsinliquidnitrogen