Morphological and Chemical Effects of Plasma Treatment with Oxygen (O2) and Sulfur Hexafluoride (SF6) on Cellulose Surface

Cellulose is a polymer widely available in nature, however its applications may be restrict due to its hydrophilic character. The creation of hierarchical structures on the surface is one of the required factors to obtain the hydrophobicity of this material. In order to compare the morphological and...

Full description

Bibliographic Details
Main Authors: Janine Sanches Gonzaga de Camargo, Aparecido Junior de Menezes, Nilson Cristino da Cruz, Elidiane Cipriano Rangel, Adriana de Oliveira Delgado-Silva
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2018-02-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800842&tlng=en
Description
Summary:Cellulose is a polymer widely available in nature, however its applications may be restrict due to its hydrophilic character. The creation of hierarchical structures on the surface is one of the required factors to obtain the hydrophobicity of this material. In order to compare the morphological and chemical effects caused by the action of different gases in the creation of nanostructures on the cellulose surface, samples were exposed to oxygen (O2) and sulfur hexafluoride (SF6) plasma treatments. The changes in morphology after treatment prove that both the gases were able to create similar nanostructures in the material. The analysis of elemental composition and identification of functional groups on the sample surface showed that chemical modifications occurred differently for each treatment. Contact angle measurements revealed that samples treated by O2 plasma remained hydrophilic, whereas low receptivity to polar (θ > 120º) and non-polar (θ > 100º) liquids was observed for samples exposed to SF6 plasma.
ISSN:1516-1439