Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras

We prove new theorems related to the construction of the shallow water bi-Hamiltonian systems associated to the semi-direct product of Virasoro and affine Kac–Moody Lie algebras. We discuss associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.

Bibliographic Details
Main Author: Zuevsky A.
Format: Article
Language:English
Published: De Gruyter 2018-01-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2018-0002
_version_ 1818733602411642880
author Zuevsky A.
author_facet Zuevsky A.
author_sort Zuevsky A.
collection DOAJ
description We prove new theorems related to the construction of the shallow water bi-Hamiltonian systems associated to the semi-direct product of Virasoro and affine Kac–Moody Lie algebras. We discuss associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.
first_indexed 2024-12-17T23:52:04Z
format Article
id doaj.art-7baf9e1610df4913a13c1f92b0d3c682
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-17T23:52:04Z
publishDate 2018-01-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-7baf9e1610df4913a13c1f92b0d3c6822022-12-21T21:28:10ZengDe GruyterOpen Mathematics2391-54552018-01-011611810.1515/math-2018-0002math-2018-0002Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebrasZuevsky A.0Institute of Mathemtics, Czech Academy of Sciences, Prague, Czech RepublicWe prove new theorems related to the construction of the shallow water bi-Hamiltonian systems associated to the semi-direct product of Virasoro and affine Kac–Moody Lie algebras. We discuss associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.https://doi.org/10.1515/math-2018-0002affine kac–moody lie algebrasbi-hamiltonian systemsverma modulescoadjoint orbits17b6917b0870g6082c23
spellingShingle Zuevsky A.
Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras
Open Mathematics
affine kac–moody lie algebras
bi-hamiltonian systems
verma modules
coadjoint orbits
17b69
17b08
70g60
82c23
title Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras
title_full Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras
title_fullStr Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras
title_full_unstemmed Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras
title_short Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras
title_sort algebraic proofs for shallow water bi hamiltonian systems for three cocycle of the semi direct product of kac moody and virasoro lie algebras
topic affine kac–moody lie algebras
bi-hamiltonian systems
verma modules
coadjoint orbits
17b69
17b08
70g60
82c23
url https://doi.org/10.1515/math-2018-0002
work_keys_str_mv AT zuevskya algebraicproofsforshallowwaterbihamiltoniansystemsforthreecocycleofthesemidirectproductofkacmoodyandvirasoroliealgebras