Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis

Fuzzy dispersion entropy (FuzzDE) is a very recently proposed non-linear dynamical indicator, which combines the advantages of both dispersion entropy (DE) and fuzzy entropy (FuzzEn) to detect dynamic changes in a time series. However, FuzzDE only reflects the information of the original signal and...

Full description

Bibliographic Details
Main Authors: Yuxing Li, Bingzhao Tang, Bo Geng, Shangbin Jiao
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/10/544
_version_ 1827650176488046592
author Yuxing Li
Bingzhao Tang
Bo Geng
Shangbin Jiao
author_facet Yuxing Li
Bingzhao Tang
Bo Geng
Shangbin Jiao
author_sort Yuxing Li
collection DOAJ
description Fuzzy dispersion entropy (FuzzDE) is a very recently proposed non-linear dynamical indicator, which combines the advantages of both dispersion entropy (DE) and fuzzy entropy (FuzzEn) to detect dynamic changes in a time series. However, FuzzDE only reflects the information of the original signal and is not very sensitive to dynamic changes. To address these drawbacks, we introduce fractional order calculation on the basis of FuzzDE, propose <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>, and use it as a feature for the signal analysis and fault diagnosis of bearings. In addition, we also introduce other fractional order entropies, including fractional order DE (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>DE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>), fractional order permutation entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>PE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>) and fractional order fluctuation-based DE (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>), and propose a mixed features extraction diagnosis method. Both simulated as well as real-world experimental results demonstrate that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula> at different fractional orders is more sensitive to changes in the dynamics of the time series, and the proposed mixed features bearing fault diagnosis method achieves 100% recognition rate at just triple features, among which, the mixed feature combinations with the highest recognition rates all have <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula> also appears most frequently.
first_indexed 2024-03-09T20:11:42Z
format Article
id doaj.art-7bb49b4d81464ae7bd821beeae469e6a
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T20:11:42Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-7bb49b4d81464ae7bd821beeae469e6a2023-11-24T00:11:17ZengMDPI AGFractal and Fractional2504-31102022-09-0161054410.3390/fractalfract6100544Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault DiagnosisYuxing Li0Bingzhao Tang1Bo Geng2Shangbin Jiao3School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, ChinaSchool of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, ChinaSchool of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, ChinaSchool of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, ChinaFuzzy dispersion entropy (FuzzDE) is a very recently proposed non-linear dynamical indicator, which combines the advantages of both dispersion entropy (DE) and fuzzy entropy (FuzzEn) to detect dynamic changes in a time series. However, FuzzDE only reflects the information of the original signal and is not very sensitive to dynamic changes. To address these drawbacks, we introduce fractional order calculation on the basis of FuzzDE, propose <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>, and use it as a feature for the signal analysis and fault diagnosis of bearings. In addition, we also introduce other fractional order entropies, including fractional order DE (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>DE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>), fractional order permutation entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>PE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>) and fractional order fluctuation-based DE (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>), and propose a mixed features extraction diagnosis method. Both simulated as well as real-world experimental results demonstrate that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula> at different fractional orders is more sensitive to changes in the dynamics of the time series, and the proposed mixed features bearing fault diagnosis method achieves 100% recognition rate at just triple features, among which, the mixed feature combinations with the highest recognition rates all have <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>FuzzDE</mi></mrow><mi>α</mi></msub></mrow></semantics></math></inline-formula> also appears most frequently.https://www.mdpi.com/2504-3110/6/10/544fuzzy dispersion entropyfractional orderfeature extractionbearing fault diagnosis
spellingShingle Yuxing Li
Bingzhao Tang
Bo Geng
Shangbin Jiao
Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
Fractal and Fractional
fuzzy dispersion entropy
fractional order
feature extraction
bearing fault diagnosis
title Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
title_full Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
title_fullStr Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
title_full_unstemmed Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
title_short Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis
title_sort fractional order fuzzy dispersion entropy and its application in bearing fault diagnosis
topic fuzzy dispersion entropy
fractional order
feature extraction
bearing fault diagnosis
url https://www.mdpi.com/2504-3110/6/10/544
work_keys_str_mv AT yuxingli fractionalorderfuzzydispersionentropyanditsapplicationinbearingfaultdiagnosis
AT bingzhaotang fractionalorderfuzzydispersionentropyanditsapplicationinbearingfaultdiagnosis
AT bogeng fractionalorderfuzzydispersionentropyanditsapplicationinbearingfaultdiagnosis
AT shangbinjiao fractionalorderfuzzydispersionentropyanditsapplicationinbearingfaultdiagnosis